Los astrónomos han pasado décadas buscando algo que parece difícil de perder: alrededor de un tercio de la materia "normal" en el Universo. Es posible que los nuevos resultados del Observatorio de Rayos X Chandra de la NASA les hayan ayudado a localizar esta difícil extensión de materia perdida.
Desde observaciones independientes y
bien establecidas, los científicos han calculado con confianza cuánta
materia normal, es decir, hidrógeno, helio y otros elementos, existían
justo después del Big Bang. En el tiempo transcurrido entre los primeros
minutos y los primeros mil millones de años, gran parte de la materia
normal se abrió camino en polvo cósmico, gases y objetos, como estrellas
y planetas, que los telescopios pueden ver en el Universo actual.
El problema es que cuando los astrónomos
suman la masa de toda la materia normal en el Universo actual,
alrededor de un tercio no se puede encontrar. (Esta materia faltante es
distinta de la materia oscura aún misteriosa).
Una idea es que la masa que falta se
reunió en filamentos gigantes o filamentos de gas caliente (temperatura
inferior a 100.000 Kelvin) y muy caliente (temperatura superior a
100.000 Kelvin) en el espacio intergaláctico. Estos filamentos son
conocidos por los astrónomos como el "medio intergaláctico caliente" o
WHIM. Son invisibles para los telescopios de luz óptica, pero algunos de
los gases calientes en los filamentos se han detectado en luz
ultravioleta.
Usando una nueva técnica, los
investigadores han encontrado una nueva y sólida prueba del componente
caliente del WHIM basada en datos del Chandra y otros telescopios.
"Si encontramos esta masa faltante, podemos resolver uno de los mayores
enigmas de la astrofísica", dijo Orsolya Kovacs, del Centro de
Astrofísica | Harvard & Smithsonian (CfA) en Cambridge,
Massachusetts. "¿Dónde escondió el universo tanta cantidad de su materia
que forma cosas como las estrellas, los planetas y nosotros?"
Los astrónomos usaron el Chandra para
buscar y estudiar los filamentos de gas caliente que se encuentran a lo
largo del camino hacia un quásar, una fuente brillante de rayos X
alimentada por un agujero negro supermasivo de rápido crecimiento. Este
quásar se encuentra a unos 3.5 billones de años luz de la Tierra. Si el
componente de gas caliente del WHIM está asociado con estos filamentos,
el gas caliente absorbería parte de los rayos X del quásar. Por lo
tanto, buscaron una firma de gas caliente impresa en la luz de rayos X
del quásar detectada por el Chandra.
Uno de los desafíos de este método es
que la señal de absorción por el WHIM es débil en comparación con la
cantidad total de rayos X que proviene del quásar. Cuando se busca en
todo el espectro de rayos X en diferentes longitudes de onda, es difícil
distinguir tales características de absorción débil (señales reales del
WHIM) de las fluctuaciones aleatorias.
Kovacs y su equipo superaron este
problema al enfocar su búsqueda solo en ciertas partes del espectro de
luz de rayos X, reduciendo la probabilidad de falsos positivos. Lo
hicieron identificando primero las galaxias cercanas a la línea de
visión al quásar que se encuentran a la misma distancia de la Tierra que
las regiones de gas cálido detectadas a partir de datos ultravioleta.
Con esta técnica identificaron 17 posibles filamentos entre el quásar y
nosotros, y obtuvieron sus distancias.
Debido a la expansión del universo, que
extiende la luz a medida que viaja, cualquier absorción de rayos X por
la materia en estos filamentos se desplazará a longitudes de onda más
rojas. Las cantidades de los desplazamientos dependen de las distancias
conocidas al filamento, por lo que el equipo sabía dónde buscar en el
espectro para la absorción del WHIM.
"Nuestra técnica es similar en principio
a cómo podría realizar una búsqueda eficiente de animales en las vastas
llanuras de África", dijo Akos Bogdan, coautor también de CfA. "Sabemos
que los animales necesitan beber, así que tiene sentido buscar
alrededor de los pozos de agua primero".
Los investigadores también tuvieron que superar el problema de la
debilidad de la absorción de rayos X. Por lo tanto, aumentaron la señal
al agregar espectros de 17 filamentos, convirtiendo una observación de
5,5 días en el equivalente de casi 100 días de datos. Con esta técnica,
detectaron oxígeno con características que sugieren que estaba en un gas
con una temperatura de aproximadamente un millón de grados Kelvin.
Al extrapolar estas observaciones de
oxígeno al conjunto completo de elementos y de la región observada al
universo local, los investigadores informan que pueden explicar la
cantidad completa de materia faltante. Al menos en este caso en
particular, la materia faltante se había estado escondiendo en el WHIM
después de todo.
"Estamos encantados de haber podido
rastrear parte de este asunto faltante", dijo el coautor Randall Smith,
también de CfA. "En el futuro, podemos aplicar este mismo método a otros
datos de cuásares para confirmar que este misterio de larga data se ha
resuelto por fin".
2 comentarios:
buenos días, me parece interesante su blog, pero debido a que no encontré una dirección de email por donde escribirle, decidí hacerlo por éste medio para proponerle que intercambiemos links en nuestros blogs. El mio es https://astroenlazador.blogspot.com espero respuesta
Cual es la cantidad de masa por segundo que evoluciona en el universo?
Publicar un comentario