sábado, 7 de noviembre de 2020

El Hubble Hará un Gran Estudio en Luz Ultravioleta de Estrellas Cercanas

 

El universo sería un lugar bastante aburrido sin estrellas. Sin ellas, el universo seguiría siendo un plasma difuso principalmente de hidrógeno y helio del Big Bang.

Al igual que los bloques de construcción básicos del cosmos, los hornos de fusión nuclear estelar forjan nuevos elementos pesados, enriqueciendo su galaxia madre. La energía radiante de las estrellas alimenta potencialmente el surgimiento de vida en los planetas mejor ubicados, como sucedió en la Tierra.

Para comprender mejor las estrellas y la evolución estelar, el Instituto de Ciencias del Telescopio Espacial (STScI) en Baltimore, Maryland, ha lanzado una nueva iniciativa ambiciosa con el Telescopio Espacial Hubble de la NASA, llamada ULLYSES (Biblioteca del Legado UV de Estrellas Jóvenes como Estándares Esenciales).

ULLYSES es el programa de observación más grande del Hubble en términos de la cantidad de tiempo que el Hubble le dedicará. Se incluirán más de 300 estrellas. La luz ultravioleta (UV) de las estrellas objetivo se está utilizando para producir una biblioteca de las "plantillas" espectrales de estrellas jóvenes de baja masa de ocho regiones de formación estelar en la Vía Láctea, así como estrellas completamente adultas de gran masa en varias galaxias enanas cercanas, incluidas las Nubes de Magallanes.

"Uno de los objetivos clave de ULLYSES es formar una muestra de referencia completa que pueda utilizarse para crear bibliotecas espectrales que capturen la diversidad de estrellas, lo que garantiza un conjunto de datos heredado para una amplia gama de temas astrofísicos. Se espera que ULLYSES tenga un impacto duradero en futuras investigaciones de astrónomos de todo el mundo," dijo la directora del programa Julia Roman-Duval de STScI.

STScI ahora está lanzando el primer conjunto de observaciones ULLYSES a la comunidad astronómica. Estos primeros objetivos son estrellas calientes, masivas y azules en varias galaxias enanas cercanas.

El Hubble está ubicado sobre la atmósfera de la Tierra, que filtra la mayor parte de la radiación ultravioleta del espacio antes de que llegue a los telescopios terrestres. La sensibilidad ultravioleta del Hubble lo convierte en el único observatorio a la altura de la tarea porque las estrellas jóvenes irradian gran parte de su energía en los rayos ultravioleta a medida que crecen caóticamente a trompicones mientras se alimentan del gas y el polvo que cae.

El objetivo del programa es brindar a los astrónomos una mejor comprensión del nacimiento de las estrellas y cómo esto se relaciona con todo, desde los planetas hasta la formación y evolución de las galaxias. Los astrónomos quieren aprender cómo las estrellas jóvenes de baja masa afectan a la evolución y composición de los planetas que se forman a su alrededor. La intensa radiación ultravioleta separa las moléculas y penetra en los discos circunestelares, donde se forman los planetas, lo que influye en su química y afecta a la supervivencia de los discos. Esto tiene una relación directa con la habitabilidad del planeta, el escape atmosférico y la química. "Esta colección única está permitiendo una investigación astrofísica diversa y emocionante en muchos campos," dijo Roman-Duval.

Además, las salidas torrenciales de gas caliente de estrellas completamente adultas que son mucho más masivas que nuestro Sol dan forma a sus entornos de manera espectacular. Al apuntar a estrellas masivas en galaxias cercanas con poca abundancia de elementos pesados, similar a la composición primitiva de las primeras galaxias, los astrónomos pueden obtener información sobre cómo sus salidas pueden haber influido en la evolución de las primeras galaxias hace miles de millones de años.

El diseño y los objetivos de estas observaciones se seleccionaron en asociación con la comunidad astronómica, lo que permitió a los investigadores de todo el mundo ayudar a desarrollar el programa final, así como tener la oportunidad de organizar observaciones coordinadas por otros telescopios espaciales y terrestres en diferentes longitudes de onda de luz.

El personal científico y técnico de STScI está diseñando software específicamente relacionado con el desarrollo de bases de datos e interfaces web para garantizar un amplio acceso a la biblioteca por parte de la comunidad astronómica. Se están desarrollando herramientas para productos científicos de alto nivel y análisis espectroscópico. Todos los datos se almacenan en el Archivo Mikulski para telescopios espaciales (MAST) de STScI.

El programa ULLYSES está construyendo un legado para el futuro, creando una base de datos completa que los astrónomos utilizarán para la investigación durante las próximas décadas. El archivo también complementa las partes de la historia de la formación estelar que pronto se obtendrán con observaciones de luz infrarroja del próximo telescopio espacial James Webb de la NASA. Trabajando juntos, tanto el Hubble como Webb proporcionarán una visión holística de las estrellas y la historia de la formación estelar del universo.

 El Hubble Hará un Gran Estudio en Luz Ultravioleta de Estrellas Cercanas

 

sábado, 10 de octubre de 2020

OSIRIS-REx Revela Más Secretos del Asteroide Bennu

 

La primera misión de retorno de muestras de asteroides de la NASA ahora sabe mucho más sobre el material que recolectará en unas pocas semanas. En una colección especial de seis artículos publicados en las revistas Science and Science Advances, los científicos de la misión OSIRIS-REx presentan nuevos hallazgos sobre el material de la superficie del asteroide Bennu, las características geológicas y la historia dinámica. También sospechan que la muestra entregada de Bennu puede ser diferente a todo lo que tenemos en la colección de meteoritos en la Tierra.

Estos descubrimientos completan los requisitos científicos de recolección de muestras previas a la misión OSIRIS-REx y ofrecen información sobre la muestra de Bennu que los científicos estudiarán para las generaciones venideras.

Uno de los artículos, dirigido por Amy Simon del Centro de Vuelo Espacial Goddard de la NASA en Greenbelt, Maryland, muestra que el material orgánico que contiene carbono está muy extendido en la superficie del asteroide, incluso en el lugar principal escogido para la recogida de muestras de la misión, Nightingale, donde OSIRIS-REx realizará su primer intento de recolección de muestras el 20 de Octubre. Estos hallazgos indican que es probable que la muestra recolectada contenga minerales hidratados y material orgánico.

Esta materia orgánica puede contener carbono en una forma que se encuentra a menudo en biología o en compuestos asociados con la biología. Los científicos están planeando experimentos detallados con estas moléculas orgánicas y esperan que la muestra devuelta ayude a responder preguntas complejas sobre los orígenes del agua y la vida en la Tierra.

“La abundancia de material que contiene carbono es un gran triunfo científico para la misión. Ahora somos optimistas de que recolectaremos y devolveremos una muestra con material orgánico, un objetivo central de la misión OSIRIS-REx,” dijo Dante Lauretta, investigador principal de OSIRIS-REx en la Universidad de Arizona en Tucson.

Los autores de la colección especial también han determinado que los minerales de carbonato constituyen algunas de las características geológicas del asteroide. Los minerales de carbonato a menudo se precipitan de los sistemas hidrotermales que contienen agua y dióxido de carbono. Varias rocas de Bennu tienen vetas brillantes que parecen estar hechas de carbonato, algunas de las cuales se encuentran cerca del cráter Nightingale, lo que significa que los carbonatos pueden estar presentes en la muestra devuelta.

El estudio de los carbonatos encontrados en Bennu fue dirigido por Hannah Kaplan, de Goddard. Estos hallazgos han permitido a los científicos teorizar que el asteroide padre de Bennu probablemente tenía un sistema hidrotermal extenso, donde el agua interactuó y alteró la roca en el cuerpo padre de Bennu. Aunque el cuerpo original fue destruido hace mucho tiempo, estamos viendo evidencias de cómo se veía ese asteroide acuoso aquí, en los fragmentos restantes que componen Bennu. Algunas de estas venas de carbonato en las rocas de Bennu miden hasta unos pocos centímetros de largo y varios centímetros de grosor, lo que valida que un sistema hidrotermal de agua a escala del asteroide estaba presente en el cuerpo principal de Bennu.

Los científicos hicieron otro descubrimiento sorprendente en el sitio Nightingale: su regolito ha estado expuesto recientemente al duro entorno espacial, lo que significa que la misión recogerá y devolverá parte del material más prístino del asteroide. Nightingale es parte de una población de cráteres jóvenes, espectralmente rojos identificados en un estudio dirigido por Dani DellaGiustina en la Universidad de Arizona. Los "colores" de Bennu (variaciones en la pendiente del espectro de longitud de onda visible) son mucho más diversos de lo que se anticipó originalmente. Esta diversidad resulta de una combinación de diferentes materiales heredados del cuerpo padre de Bennu y diferentes duraciones de exposición al entorno espacial.

Los hallazgos de este artículo son un hito importante en un debate en curso en la comunidad científica planetaria: cómo los asteroides primitivos como Bennu cambian espectralmente a medida que están expuestos a procesos de "meteorización espacial", como el bombardeo de rayos cósmicos y el viento solar. Si bien Bennu parece bastante negro a simple vista, los autores ilustran la diversidad de la superficie de Bennu mediante el uso de representaciones en colores falsos de datos multiespectrales recopilados por la cámara MapCam. El material más fresco de Bennu, como el que se encuentra en el sitio Nightingale, es espectralmente más rojo que el promedio y, por lo tanto, aparece rojo en estas imágenes. El material de la superficie se vuelve azul intenso cuando ha estado expuesto a la intemperie espacial durante un período de tiempo intermedio. A medida que el material de la superficie continúa envejeciendo durante largos períodos de tiempo, finalmente se ilumina en todas las longitudes de onda, convirtiéndose en un azul menos intenso, el color espectral promedio de Bennu.

El artículo de DellaGiustina et al. también distingue dos tipos principales de rocas en la superficie de Bennu: oscuras y rugosas, y (con menos frecuencia) brillantes y lisas. Los diferentes tipos pueden haberse formado a diferentes profundidades en el asteroide padre de Bennu.

Los tipos de rocas no solo difieren visualmente, sino que también tienen sus propias propiedades físicas únicas. El artículo dirigido por Ben Rozitis de The Open University en el Reino Unido muestra que los cantos rodados oscuros son más débiles y más porosos, mientras que los cantos rodados brillantes son más fuertes y menos porosos. Las rocas brillantes también albergan los carbonatos identificados por Kaplan y su equipo, lo que sugiere que la precipitación de minerales de carbonato en grietas y espacios porosos puede ser responsable de su mayor resistencia.

Sin embargo, ambos tipos de rocas son más débiles de lo que esperaban los científicos. Rozitis y sus colegas sospechan que las rocas oscuras de Bennu (las más débiles, más porosas y más comunes) no sobrevivirían al viaje a través de la atmósfera terrestre. Por lo tanto, es probable que las muestras devueltas del asteroide Bennu proporcionen un eslabón perdido para los científicos, ya que este tipo de material no está representado actualmente en las colecciones de meteoritos.

Bennu es una pila de escombros en forma de diamante que flota en el espacio, pero hay más de lo que parece. Los datos obtenidos por el altímetro láser (OLA), de OSIRIS-REx un instrumento científico aportado por la Agencia Espacial Canadiense, han permitido al equipo de la misión desarrollar un modelo digital del terreno en 3D del asteroide que, con una resolución de 20 cm, no tiene precedentes en detalle y exactitud. En este artículo, dirigido por Michael Daly de la Universidad de York, los científicos explican cómo un análisis detallado de la forma del asteroide reveló montículos con forma de cresta en Bennu que se extienden de polo a polo, pero son lo suficientemente sutiles como para que el ojo humano los pase por alto fácilmente. Su presencia ha sido insinuada antes, pero su extensión completa de polo a polo solo se hizo evidente cuando los hemisferios norte y sur se dividieron en los datos de OLA para comparar.

El modelo de terreno digital también muestra que los hemisferios norte y sur de Bennu tienen diferentes formas. El hemisferio sur parece ser más suave y redondo, lo que los científicos creen que es el resultado de que el material suelto queda atrapado por las numerosas rocas grandes de la región.

Otro artículo de la colección especial, dirigido por Daniel Scheeres de la Universidad de Colorado Boulder, examina el campo gravitatorio de Bennu, que ha sido determinado siguiendo las trayectorias de la nave espacial OSIRIS-REx y las partículas que son expulsadas naturalmente de la superficie de Bennu. El uso de partículas como sondas de gravedad es fortuito. Antes del descubrimiento de la eyección de partículas en Bennu en 2019, el equipo estaba preocupado por mapear el campo de gravedad con la precisión requerida utilizando solo datos de seguimiento de naves espaciales. El suministro natural de docenas de mini sondas de gravedad permitió al equipo exceder ampliamente sus requisitos y obtener una visión sin precedentes del interior del asteroide.

El campo de gravedad reconstruido muestra que el interior de Bennu no es uniforme. En cambio, hay bolsas de material de mayor y menor densidad dentro del asteroide. Es como si hubiera un vacío en su centro, dentro del cual podrían caber un par de campos de fútbol. Además, la protuberancia en el ecuador de Bennu es poco densa, lo que sugiere que la rotación de Bennu está elevando este material.

Las seis publicaciones de la colección especial utilizan conjuntos de datos globales y locales recopilados por la nave espacial OSIRIS-REx desde Febrero hasta Octubre de 2019. La colección especial subraya que las misiones de retorno de muestras como OSIRIS-REx son esenciales para comprender completamente la historia y la evolución de nuestro Sistema solar.

La misión está a menos de dos semanas de cumplir su mayor objetivo: recolectar un pedazo de un asteroide prístino, hidratado y rico en carbono. OSIRIS-REx partirá de Bennu en 2021 y traerá de regreso la muestra a la Tierra el 24 de Septiembre de 2023.

 OSIRIS-REx Revela Más Secretos del Asteroide Bennu

 

domingo, 4 de octubre de 2020

El Hubble Capta el Glamour Galáctico de una Galaxia Espiral

 

Esta impresionante imagen del Telescopio Espacial Hubble de la NASA/ESA muestra la galaxia espiral NGC 5643 en la constelación de Lupus (el Lobo). Verse tan bien no es fácil; se necesitaron 30 exposiciones diferentes, para un total de nueve horas de tiempo de observación, junto con la alta resolución y claridad del Hubble, para producir una imagen de tan alto nivel de detalle y belleza.

NGC 5643 está a unos 60 millones de años luz de la Tierra y ha sido el anfitrión de un evento de supernova reciente (no visible en esta última imagen). Esta supernova (2017cbv) fue un tipo específico en el que una enana blanca roba tanta masa de una estrella compañera que se vuelve inestable y explota. La explosión libera cantidades significativas de energía e ilumina esa parte de la galaxia.

La observación fue propuesta por Adam Riess, quien (junto con Saul Perlmutter y Brian Schmidt) recibió el Premio Nobel de Física en 2011 por sus contribuciones al descubrimiento de la expansión acelerada del universo.

Actualizado: 2/10/2020

El Hubble Capta el Glamour Galáctico de una Galaxia Espiral

sábado, 26 de septiembre de 2020

OSIRIS-REx Comienza su Cuenta Atrás Para la Recolección de Muestras de Bennu

 

Se avecina un momento histórico para la misión OSIRIS-REx de la NASA. En solo unas pocas semanas, la nave espacial robótica OSIRIS-REx descenderá a la superficie sembrada de rocas del asteroide Bennu, aterrizará durante unos segundos y recogerá una muestra de las rocas y el polvo del asteroide, lo que marcará la primera vez que la NASA consigue coger pedazos de un asteroide, que será devuelto a la Tierra para su estudio.

El 20 de Octubre, la misión realizará el primer intento de su evento de recolección de muestras Touch-And-Go (TAG). Esta serie de maniobras llevarán a la nave espacial al lugar del asteroide llamado Nightingale, un área rocosa de 16 metros de diámetro en el hemisferio norte de Bennu, donde el brazo robótico de muestreo de la nave intentará recolectar una muestra. El sitio Nightingale fue seleccionado como el sitio de muestreo principal de la misión porque contiene la mayor cantidad de material de grano fino sin obstrucciones, pero la región está rodeada de rocas del tamaño de un edificio. Durante el evento de muestreo, la nave espacial, que es del tamaño de una camioneta grande, intentará aterrizar en un área que es solo del tamaño de unos pocos espacios de estacionamiento, y a solo unos pasos de algunas de estas grandes rocas.

Durante el evento de recolección de muestras de 4,5 horas, la nave espacial realizará tres maniobras separadas para alcanzar la superficie del asteroide. La secuencia de descenso comienza con OSIRIS-REx encendiendo sus propulsores para una maniobra de salida de la órbita para dejar su órbita segura aproximadamente a 770 metros de la superficie de Bennu. Después de viajar cuatro horas en esta trayectoria descendente, la nave espacial realizará la maniobra "Checkpoint" a una altitud aproximada de 125 metros. Esta combustión del propulsor ajusta la posición y la velocidad de OSIRIS-REx para descender abruptamente hacia la superficie. Aproximadamente 11 minutos después, la nave espacial realizará la combustión "Matchpoint" a una altitud aproximada de 54 metros, ralentizando su descenso y apuntando a una trayectoria que coincida con la rotación del asteroide en el momento del contacto. La nave luego descenderá a la superficie, aterrizará durante menos de dieciséis segundos y disparará una de sus tres botellas de nitrógeno presurizado. El gas agitará y levantará el material de la superficie de Bennu, que luego quedará atrapado en la cabeza recolectora de la nave espacial. Después de este breve toque, OSIRIS-REx encenderá sus propulsores para alejarse de la superficie de Bennu y navegar a una distancia segura del asteroide.

Después de la maniobra de salida de la órbita, la nave espacial emprenderá una secuencia de reconfiguraciones para prepararse para el muestreo. Primero, OSIRIS-REx extednerá su brazo de muestreo robótico, el Mecanismo de adquisición de muestras Touch-And-Go (TAGSAM), desde su posición de almacenamiento plegada hasta la posición de recolección de muestras. Posteriormente, los dos paneles solares de la nave espacial se moverán en una configuración de "ala en Y" sobre el cuerpo de la nave espacial, que los colocará de manera segura hacia arriba y lejos de la superficie del asteroide durante el aterrizaje. Esta configuración también colocará el centro de gravedad de la nave espacial directamente sobre la cabeza del colector TAGSAM, que es la única parte de la nave espacial que entrará en contacto con la superficie de Bennu durante el evento de recolección de muestras.

Debido a que la nave espacial y Bennu estarán a aproximadamente 334 millones de kilómetros de la Tierra durante el TAG, las señales tardarán unos 18,5 minutos en viajar entre ellos. Este lapso de tiempo impedirá el control en directo de las actividades de vuelo desde tierra durante el evento TAG, por lo que la nave espacial está diseñada para realizar toda la secuencia de recolección de muestras de forma autónoma. Antes del inicio del evento, el equipo de OSIRIS-REx vinculará todos los comandos a la nave espacial y luego enviará un comando "GO" para comenzar.

Para navegar de forma autónoma al sitio Nightingale, OSIRIS-REx utilizará el sistema de navegación Natural Feature Tracking (NFT). La nave espacial comenzará a recopilar imágenes de navegación aproximadamente 90 minutos después de la salida de la órbita. Luego comparará estas imágenes en tiempo real con un catálogo de imágenes integrado, utilizando características de la superficie identificadas para asegurarse de que está en el camino correcto hacia el sitio. A medida que la nave espacial se acerque a la superficie, OSIRIS-REx actualizará las maniobras Checkpoint y Matchpoint basadas en la estimación del navegador NFT de la posición y velocidad de la nave espacial. OSIRIS-REx continuará utilizando las estimaciones del NFT a medida que descienda a la superficie después de la maniobra Matchpoint para monitorear su posición y velocidad de descenso. La nave espacial abortará de forma autónoma si su trayectoria varía fuera de los límites predefinidos.

Para garantizar que la nave espacial aterrice en un área segura que evite las numerosas rocas de la región, el sistema de navegación está equipado con un mapa de peligros del sitio Nightingale, que delinea áreas dentro del sitio de muestreo que podrían dañar potencialmente la nave espacial. Si el sistema NFT de la nave espacial detecta que está en camino de tocar una de estas zonas peligrosas, la nave de forma autónoma saldrá de su aproximación una vez que alcance una altitud de 5 metros. Esto mantiene la nave espacial segura y permite un intento posterior de recolección de muestras en una fecha futura.

A medida que la nave espacial realice cada evento en la secuencia de recolección de muestras, enviará actualizaciones de telemetría al equipo OSIRIS-REx, aunque a una velocidad de datos extremadamente lenta. El equipo monitoreará la telemetría durante la excursión y podrá confirmar que la nave espacial ha aterrizado con éxito en la superficie de Bennu poco después de que ocurra el TAG. Las imágenes y otros datos científicos recopilados durante el evento se vincularán después de que la nave espacial se haya alejado del asteroide y pueda apuntar su antena más grande hacia la Tierra para transmitir a velocidades de comunicación más altas.

OSIRIS-REx se encargará de recolectar al menos 60 gramos del material rocoso de Bennu para traerlos de regreso a la Tierra, el mayor retorno de muestras del espacio desde el programa Apolo, y la misión ha desarrollado dos métodos para verificar que se produjo esta recolección de muestras. El 22 de Octubre, la cámara SamCam de OSIRIS-REx capturará imágenes del cabezal TAGSAM para ver si contiene el material de la superficie de Bennu. La nave espacial también realizará una maniobra de giro el 24 de Octubre para determinar la masa del material recolectado. Si estas medidas muestran una recolección exitosa, se tomará la decisión de colocar la muestra en la Cápsula de Retorno de Muestras (SRC) para regresar a la Tierra. Si no se ha recolectado suficiente muestra de Nightingale, la nave espacial tiene cargas de nitrógeno a bordo para dos intentos más. Pero no se realizaría un intento de TAG en el lugar secundario Osprey antes de Enero de 2021.

El equipo de la misión ha pasado los últimos meses preparándose para el evento de recolección de muestras mientras maximiza el trabajo remoto como parte de su respuesta al COVID-19. El día del TAG, un número limitado de miembros del equipo monitoreará la nave espacial desde el Área de Apoyo a la Misión de Lockheed Martin Space, tomando las precauciones de seguridad adecuadas. Otros miembros del equipo también estarán en otros lugares para cubrir el evento, mientras también mantendrán los protocolos de seguridad.

La nave espacial está programada para partir de Bennu en 2021 y entregar la muestra recolectada a la Tierra el 24 de Septiembre de 2023.

 

Actualizado: 25/9/2020 
 
 

 

 

sábado, 19 de septiembre de 2020

Impresionante Imagen de las Tormentas de Júpiter

 

Esta última imagen de Júpiter, tomada por el Telescopio Espacial Hubble de la NASA el 25 de Agosto de 2020, fue captada cuando el planeta estaba a más de 650 millones de kilómetros de la Tierra. La visión nítida del Hubble está brindando a los investigadores un informe meteorológico actualizado sobre la atmósfera turbulenta del planeta monstruoso, incluida una nueva y notable tormenta que se avecina, y un primo de la famosa región de la Gran Mancha Roja preparándose para cambiar de color, nuevamente.

Un detalle único y emocionante de la instantánea del Hubble aparece en latitudes medias del norte como una tormenta brillante, blanca y extendida que viaja alrededor del planeta a 560 kilómetros por hora. Esta única columna tormentosa estalló el 18 de Agosto de 2020, y los observadores terrestres han descubierto dos más que aparecieron más tarde en la misma latitud.

Si bien es común que surjan tormentas en esta región aproximadamente cada seis años, a menudo con múltiples tormentas a la vez, el momento de las observaciones del Hubble es perfecto para mostrar la estructura a raíz de la perturbación, durante las primeras etapas de su evolución. Detrás de la columna hay rasgos pequeños y redondeados con colores complejos "rojo, blanco y azul" en la imagen de luz ultravioleta, visible e infrarroja cercana del Hubble. Tales características discretas generalmente se disipan en Júpiter, dejando solo cambios en los colores de las nubes y la velocidad del viento, pero una tormenta similar en Saturno condujo a un vórtice de larga duración. Las diferencias en las secuelas de las tormentas de Júpiter y Saturno pueden estar relacionadas con las abundancias de agua contrastantes en sus atmósferas, ya que el vapor de agua puede gobernar la enorme cantidad de energía almacenada que puede ser liberada por estas erupciones de tormenta.

El Hubble muestra que la Gran Mancha Roja, girando en sentido contrario a las agujas del reloj en el hemisferio sur del planeta, se adentra en las nubes delante de ella, formando una cascada de cintas blancas y beige. La Gran Mancha Roja es actualmente de un color rojo excepcionalmente rico, con su núcleo y la banda más externa de un rojo más intenso.

Los investigadores dicen que la Gran Mancha Roja ahora mide aproximadamente 15.700 kilómetros de ancho, lo suficientemente grande como para tragar la Tierra. La súper tormenta todavía se está reduciendo como se observa en las observaciones telescópicas que datan de 1930, pero la razón de su tamaño menguante es un completo misterio.

Otra característica que los investigadores están notando que ha cambiado es Oval BA, apodada por los astrónomos como la Pequeña Mancha Roja, que aparece justo debajo de la Gran Mancha Roja en esta imagen. Durante los últimos años, la Pequeña Mancha Roja ha ido perdiendo color a su tono original de blanco después de aparecer roja en 2006. Sin embargo, ahora el núcleo de esta tormenta parece oscurecerse ligeramente. Esto podría insinuar que la Pequeña Mancha Roja está en camino de cambiar a un color más similar a su prima una vez más.

La imagen del Hubble muestra que Júpiter está despejando sus nubes blancas de mayor altitud, especialmente a lo largo del ecuador del planeta, donde una neblina de hidrocarburos anaranjada lo envuelve.

La luna helada Europa, que se cree que contiene ingredientes potenciales para la vida, es visible a la izquierda del gigante gaseoso.

Actualizado: 18/9/2020

 Impresionante Imagen de las Tormentas de Júpiter

sábado, 12 de septiembre de 2020

Seis Tesoros del Cosmos Observados Por el Chandra

 Seis Tesoros del Cosmos Observados Por el Chandra

 

La humanidad tiene "ojos" que pueden detectar todos los diferentes tipos de luz a través de telescopios alrededor del mundo y una flota de observatorios en el espacio. Desde ondas de radio hasta rayos gamma, este enfoque de la astronomía de "múltiples longitudes de onda" es crucial para obtener una comprensión completa de los objetos en el espacio.

Esta compilación ofrece ejemplos de imágenes de diferentes misiones y telescopios que se combinan para comprender mejor la ciencia del universo. Cada una de estas imágenes contiene datos del Observatorio de Rayos X Chandra de la NASA, así como de otros telescopios. Se muestran varios tipos de objetos (galaxias, remanentes de supernovas, estrellas, nebulosas planetarias), pero juntos demuestran las posibilidades cuando se reúnen datos de todo el espectro electromagnético.

Fila superior, de izquierda a derecha:

M82
Messier 82, o M82, es una galaxia que está orientada de lado hacia la Tierra. Esto les da a los astrónomos y sus telescopios una visión interesante de lo que sucede cuando esta galaxia experimenta estallidos de formación estelar. Los rayos X del Chandra (que aparecen como azul y rosa) muestran gas en flujos de salida de unos 20.000 años luz de largo que se ha calentado a temperaturas superiores a diez millones de grados por repetidas explosiones de supernovas. Los datos de luz óptica del Telescopio Espacial Hubble de la NASA (rojo y naranja) muestran la galaxia.

Abell 2744
Los cúmulos de galaxias son los objetos más grandes del universo que se mantienen unidos por la gravedad. Contienen enormes cantidades de gas sobrecalentado, con temperaturas de decenas de millones de grados, que brilla intensamente en rayos X, y se puede observar a millones de años luz entre las galaxias. Esta imagen del cúmulo de galaxias Abell 2744 combina rayos X del Chandra (emisión azul difusa) con datos de luz óptica del Hubble (rojo, verde y azul).

Supernova 1987A (SN 1987A)
El 24 de febrero de 1987, los observadores en el hemisferio sur vieron un nuevo objeto en una galaxia cercana llamada Gran Nube de Magallanes. Esta fue una de las explosiones de supernova más brillantes en siglos y pronto se conoció como Supernova 1987A (SN 87A). Los datos del Chandra (azul) muestran la ubicación de la onda de choque de la supernova, similar al boom sónico de un avión supersónico, interactuando con el material circundante a unos cuatro años luz del punto de la explosión original. Los datos ópticos del Hubble (naranja y rojo) también muestran evidencia de esta interacción en el anillo.

Fila inferior, de izquierda a derecha:

Eta Carinae
¿Cuál será la próxima estrella de nuestra Vía Láctea en explotar como supernova? Los astrónomos no están seguros, pero uno de los candidatos podría ser Eta Carinae, un sistema volátil que contiene dos estrellas masivas que orbitan estrechamente entre sí. Esta imagen tiene tres tipos de luz: datos ópticos del Hubble (que aparecen como blanco), ultravioleta (cian) del Hubble y rayos X del Chandra (que aparecen como una emisión púrpura). Las erupciones anteriores de esta estrella han resultado en un anillo de gas emisor de rayos X caliente de unos 2,3 años luz de diámetro que rodea a estas dos estrellas.

Galaxia Rueda de Carro
Esta galaxia se asemeja a un ojo de buey, lo cual es apropiado porque su apariencia se debe en parte a una galaxia más pequeña que pasó por el centro de este objeto. La violenta colisión produjo ondas de choque que barrieron la galaxia y desencadenaron grandes cantidades de formación de estrellas. Los rayos X del Chandra (púrpura) muestran que el gas caliente perturbado inicialmente alojado en la galaxia Rueda de Carro es arrastrado a más de 150.000 años luz por la colisión. Los datos ópticos del Hubble (rojo, verde y azul) muestran dónde esta colisión pudo haber desencadenado la formación de estrellas.

Nebulosa de la Hélice
Cuando una estrella como el Sol se queda sin combustible, se expande y sus capas externas se inflaman, y luego el núcleo de la estrella se encoge. Esta fase se conoce como "nebulosa planetaria" y los astrónomos esperan que nuestro Sol experimente esto en unos 5 mil millones de años. Esta imagen de la Nebulosa de la Hélice contiene datos infrarrojos del Telescopio Espacial Spitzer de la NASA (verde y rojo), luz óptica del Hubble (naranja y azul), ultravioleta del telescopio GALEX de la NASA (cian) y rayos X del Chandra (que aparecen en blanco) que muestran la estrella enana blanca que se formó en el centro de la nebulosa. La imagen tiene unos cuatro años luz de diámetro.

Actualizado: 9/9/202

sábado, 29 de agosto de 2020

Spitzer Captura el Retrato de una Familia Estelar

Spitzer Captura el Retrato de una Familia Estelar 

Un mosaico del Telescopio Espacial Spitzer de la NASA de las regiones Cepheus C y Cepheus B. Image Credit: NASA/JPL-Caltech

En este gran mosaico celeste tomado por el Telescopio Espacial Spitzer de la NASA y publicado en 2019, hay mucho que ver, incluidos múltiples grupos de estrellas nacidas de los mismos grupos densos de gas y polvo. Algunos de estos grupos son más antiguos que otros y están más evolucionados, lo que lo convierte en un retrato estelar generacional. Esta imagen es de las regiones Cepheus C y Cepheus B y combina datos de los instrumentos IRAC y MIPS de Spitzer.

La gran región verde y naranja que ocupa la mayor parte de la imagen es una nebulosa lejana, o una nube de gas y polvo en el espacio. Aunque puede parecer que la nube fluye desde la mancha blanca brillante en su punta, en realidad es lo que queda de una nube mucho más grande que ha sido tallada por la radiación de las estrellas. La región brillante está iluminada por estrellas masivas, pertenecientes a un cúmulo que se extiende por encima de la mancha blanca. El color blanco es la combinación de cuatro colores (azul, verde, naranja y rojo), cada uno de los cuales representa una longitud de onda diferente de luz infrarroja, que es invisible para los ojos humanos. El polvo que ha sido calentado por la radiación de las estrellas crea el resplandor rojo circundante.

Actualizado: 28/8/2020

 

sábado, 22 de agosto de 2020

La NASA Prueba un Combustible "Verde" Para Naves Espaciales

La NASA Prueba un  Combustible "Verde" Para Naves Espaciales
Image Credit: NASA/MSFCAñadir título

 

La NASA acaba de validar un nuevo tipo de propulsor, o combustible, para naves espaciales de todos los tamaños. En lugar de hidracina tóxica, las misiones espaciales pueden utilizar un propulsor “verde” menos tóxico y tecnologías compatibles diseñadas para acompañarlo. En poco más de un año desde su lanzamiento, la Misión de Infusión de Propelente Verde de la NASA (GPIM) demostró con éxito que un propulsor y un sistema de propulsión nunca antes utilizados funcionan según lo previsto, demostrando que ambos son opciones prácticas para misiones futuras.

GPIM se propuso probar un monopropelente, un propelente químico que puede quemarse por sí solo sin un oxidante separado, llamado Advanced Spacecraft Energetic Non-Toxic (ASCENT). Anteriormente conocido como AF-M315E, el Laboratorio de Investigación de la Fuerza Aérea de EE.UU. inventó el propulsor en la Base de la Fuerza Aérea Edwards en California. Es una alternativa a la hidracina monopropelente.

“Esta es la primera vez en 50 años que la NASA probó un nuevo monopropelente de alto rendimiento en el espacio”, dijo Tim Smith, gerente de la misión GPIM en el Centro de Vuelo Espacial Marshall de la NASA en Huntsville, Alabama. “Tiene el potencial de complementar o incluso reemplazar a la hidracina, que las naves espaciales han utilizado desde la década de los 60”. Con sede en Marshall, el programa Technology Demonstration Mission (TDM) de la NASA gestiona la misión.

La demostración efectiva del propulsor de GPIM allanó el camino para la aceptación de ASCENT por parte de la NASA en nuevas misiones. La próxima misión de la NASA que utilizará ASCENT será  Lunar Flashlight. La pequeña nave espacial, que tiene como objetivo proporcionar información clara sobre la presencia de depósitos de agua dentro de los cráteres de la Luna, se lanzará como una carga útil secundaria en la misión Artemisa I, la primera prueba de vuelo integrada de la nave espacial Orión de la NASA y el cohete SLS.

A pesar de ser de color rosa, ASCENT se considera “verde” por su toxicidad significativamente reducida en comparación con la hidracina, que requiere trajes de protección y procedimientos de procesamiento de carga de propelente rigurosos. Es más seguro de almacenar y usar, requiriendo un mínimo de equipo de protección personal como batas de laboratorio, gafas y guantes. Además de ser más fácil y menos costoso de manejar aquí en la Tierra, al cargar una nave espacial con propulsor, por ejemplo, ASCENT permitirá que la nave espacial viaje más lejos u opere más tiempo con menos propulsor en su tanque, dado su mayor rendimiento.

Pero para probar el propulsor en una pequeña nave espacial, el equipo de GPIM tuvo que desarrollar hardware y sistemas compatibles con el líquido. Aerojet Rocketdyne de Redmond, Washington, diseñó y construyó los cinco propulsores a bordo del GPIM. Aerojet Rocketdyne y Ball Aerospace de Boulder, Colorado, co-diseñaron los otros elementos del sistema de propulsión.

Mientras estaba en órbita, GPIM probó el propulsor y el sistema de propulsión, incluidos los propulsores, los tanques y las válvulas, mediante la realización de una serie planificada de maniobras orbitales. Las maniobras de control de actitud, el proceso de mantener un control estable de un satélite y la reducción de la órbita demostraron el rendimiento proyectado del propulsor antes de la misión, mostrando un aumento del 50% en el consumo de combustible de la nave espacial en comparación con la hidracina.

Con los objetivos de demostración de tecnología casi completos, la misión demostró que ASCENT y el sistema de propulsión compatible son una alternativa viable y eficaz para la NASA y la industria de vuelos espaciales comerciales, dijo Smith.

“Podemos atribuir el éxito de GPIM a una sólida asociación”, dijo Smith. La Dirección de Misión de Tecnología Espacial de la NASA seleccionó a Ball Aerospace para liderar la misión en 2012. Además de construir la nave espacial del tamaño de un mini refrigerador, la compañía integró y probó las cargas útiles y el sistema de propulsión antes del lanzamiento y brinda apoyo a las operaciones de vuelo.

“Nos complace anunciar que las operaciones de vuelo han sido muy fluidas, con el nuevo subsistema de propulsión funcionando como lo anticipamos”, dijo Christopher McLean, investigador principal de GPIM para Ball Aerospace. “Apreciamos enormemente la asociación y el apoyo continuo a lo largo de esta misión de la Dirección de Misiones de Tecnología Espacial de la NASA y la oficina de gestión de programas en Marshall”.

GPIM se acerca a la finalización de la misión y la nave espacial ha iniciado una serie de encendidos de desorbitación. Aproximadamente siete encendidos reducirán la órbita a aproximadamente 180 kilómetros y agotarán el tanque propulsor. La pequeña nave espacial se quemará en la atmósfera de la Tierra al hacer la reentrada, prevista para finales de este mes de Septiembre.

Actualizado: 21/8/2020


sábado, 15 de agosto de 2020

Observan la Galaxia Más Distante y Parecida a la Vía Láctea

 

Observan la Galaxia Parecida a la Vía Láctea Más Distante

Imagen de SPT0418-47 obtenida con lente gravitacional. Crédito: ALMA (ESO/NAOJ/NRAO), Rizzo et al.

La galaxia está distorsionada y se ve con forma de anillo de luz en el cielo.

Utilizando el Atacama Large Millimeter/submillimeter Array (ALMA), del cual el Observatorio Europeo Austral (ESO) es socio, un equipo de astrónomos ha revelado la presencia de una galaxia extremadamente distante y, por lo tanto, muy joven, que es sorprendentemente similar a nuestra Vía Láctea. La galaxia está tan lejos que su luz ha tardado más de 12 mil millones de años en llegar a nosotros: la vemos como era cuando el universo tenía sólo 1.400 millones de años. También sorprende su falta de caos, contradiciendo las teorías que suponen que, en el universo primitivo, todas las galaxias eran turbulentas e inestables. Este inesperado descubrimiento desafía nuestra comprensión de cómo se forman las galaxias, proporcionando nuevas perspectivas sobre el pasado de nuestro universo.

“Este resultado representa un avance en el campo de la formación de galaxias, mostrando que las estructuras que observamos en galaxias espirales cercanas y en nuestra Vía Láctea ya estaban en su lugar hace 12 mil millones de años”, afirma Francesca Rizzo, estudiante de doctorado del Instituto Max Planck de Astrofísica en Alemania, quien dirigió la investigación publicada hoy en Nature. Aunque la galaxia estudiada, llamada SPT0418-47, no parece tener brazos espirales, tiene al menos dos características típicas de nuestra Vía Láctea: un disco giratorio y una protuberancia, el gran grupo de estrellas concentradas alrededor del centro galáctico. Es la primera vez que se ve una protuberancia en una etapa tan temprana de la historia del universo, haciendo de SPT0418-47 la galaxia parecida a la Vía Láctea más distante observada hasta el momento.

“La gran sorpresa fue descubrir que esta galaxia es en realidad bastante similar a las galaxias cercanas, al contrario de lo que se esperaba por los modelos y observaciones anteriores, menos detalladas”, sugiere el coautor Filippo Fraternali, del Instituto Astronómico Kapteyn de la Universidad de Groningen, en los Países Bajos. En el universo primitivo, las galaxias jóvenes todavía estaban en proceso de formación, por lo que los investigadores esperaban que fueran caóticas y carecieran de las estructuras típicas de galaxias más maduras como la Vía Láctea.

Estudiar galaxias distantes como SPT0418-47 es fundamental para nuestra comprensión de cómo se formaron y evolucionaron las galaxias. Esta galaxia está tan lejos que la vemos cuando el universo tenía sólo el 10% de su edad actual, ya que su luz tardó 12 mil millones de años en llegar a la Tierra. Al estudiarla, estamos volviendo a una época en la que estas galaxias bebé estaban empezando a desarrollarse.

Debido a la gran distancia a la que se encuentran, es casi imposible observar con detalle estas galaxias, incluso con los telescopios más potentes, ya que las galaxias se ven pequeñas y débiles. El equipo superó este obstáculo al usar una galaxia cercana como una poderosa lupa, un efecto conocido como lente gravitacional, permitiendo a ALMA ver el pasado lejano con un detalle sin precedentes. En este efecto, el tirón gravitacional de la galaxia cercana distorsiona y dobla la luz de la galaxia distante, haciendo que la veamos deformada y magnificada.

Gracias a su alineación casi exacta, la galaxia distante vista con lente gravitacional aparece como un anillo de luz casi perfecto alrededor de la galaxia cercana. El equipo de investigación reconstruyó la verdadera forma de la galaxia distante y el movimiento de su gas a partir de los datos de ALMA utilizando una nueva técnica de modelado por ordenador. “Cuando vi por primera vez la imagen reconstruida de SPT0418-47 no podía creerlo: se abría un cofre del tesoro”, afirma Rizzo.

“Lo que encontramos fue bastante desconcertante: a pesar de formar estrellas a un ritmo alto, y por lo tanto ser un lugar con procesos altamente energéticos, SPT0418-47 es el disco de galaxia mejor ordenado que jamás se haya observado en el universo temprano”, declaró la coautora Simona Vegetti, también del Instituto Max Planck de Astrofísica. “Este resultado es bastante inesperado y tiene importantes implicaciones en la forma en que creemos que evolucionan las galaxias”. Los astrónomos señalan, sin embargo, que, aunque SPT0418-47 tiene un disco y otras características similares a las de las galaxias espirales que vemos hoy en día, esperan que evolucione a una galaxia muy diferente de la Vía Láctea y se una a la clase de galaxias elípticas, otro tipo de galaxias que, junto a las espirales, habitan el universo actual.

Este inesperado descubrimiento sugiere que el universo primitivo pudo no ser tan caótico como se creía y plantea muchas preguntas sobre cómo podría haberse formado una galaxia bien ordenada tan poco tiempo después del Big Bang. Este hallazgo de ALMA sigue al descubrimiento anterior anunciado en mayo de un disco masivo giratorio visto a una distancia similar. Gracias al efecto de la lente, SPT0418-47 se ve con más detalle y, además de un disco, tiene una protuberancia, por lo que se parece más a nuestra Vía Láctea actual que la galaxia estudiada anteriormente.

Futuros estudios, incluso con el Telescopio Extremadamente Grande de ESO, tratarán de descubrir cuán típicas son realmente estas galaxias de disco 'bebés' y si es común que sean menos caóticas de lo previsto, abriendo nuevas vías para que los astrónomos descubran cómo evolucionaron las galaxias.

Actualizado: 14/8/2020

sábado, 1 de agosto de 2020

Mars 2020 Sale de "Modo Seguro" y Continúa Su Viaje Hacia Marte

Mars 2020 Sale de "Modo Seguro" y Continúa Su Viaje Hacia Marte 

 Image Credit: NASA


Los controladores de vuelo de la misión Mars 2020 del rover Perseverance de la NASA han devuelto la nave espacial a las operaciones de vuelo nominales.

Lanzada el 30 de Julio a las 11:50 GMT, Mars 2020 entró en un estado llamado "modo seguro" poco después de colocarse en una trayectoria interplanetaria debido a que un sensor indicaba que parte de la nave espacial estaba ligeramente más fría de lo esperado. Cuando una nave espacial entra en modo seguro, todos los sistemas excepto los esenciales se apagan hasta que recibe nuevos comandos del control de la misión.

La misión utiliza un bucle de freón líquido para llevar el calor desde el centro de la nave espacial a los radiadores en la etapa de crucero (la parte que ayuda a volar el rover a Marte), que tienen una vista al espacio. Los controladores siguen de cerca la diferencia de temperatura entre la entrada caliente a los radiadores y la salida más fría de los radiadores. Cuando la nave espacial entró en la sombra de la Tierra, el Sol fue bloqueado temporalmente por la Tierra y la temperatura de salida bajó. 

Esto hizo que aumentara la diferencia entre la entrada caliente y la salida más fría. Este diferencial transitorio activó una alarma y provocó que la nave espacial pasara al modo de espera conocido como "modo seguro".

Gracias al trabajo de los controladores de la misión, pudieron devolver a la nave a las operaciones normales de vuelo. "Con la salida del modo seguro, el equipo se está dedicando al negocio de los cruceros interplanetarios", dijo Matt Wallace, subgerente de proyectos de Mars 2020 del Laboratorio de Propulsión a Chorro de la NASA. "Próxima parada, el Cráter Jezero".

Actualizado: 1/8/2020

sábado, 25 de julio de 2020

Primera Imagen de un Sistema con Varios Planetas Alrededor de una Estrella de Tipo Solar

Captan la Primera Imagen de un Sistema con Varios Planetas Alrededor de una Estrella de Tipo Solar 
 Esta imagen, captada por el instrumento SPHERE, instalado en el Very Large Telescope de ESO, muestra a la estrella TYC 8998-760-1 acompañada de dos exoplanetas gigantes. Es la primera vez que los astrónomos observan directamente a más de un planeta orbitando a una estrella similar al Sol. Image Credit: ESO/Bohn et al.

El telescopio VLT (Very Large Telescope) del Observatorio Europeo Austral (ESO) ha tomado la primera imagen de una estrella joven similar al Sol acompañada de dos exoplanetas gigantes. Las imágenes de sistemas con múltiples exoplanetas son extremadamente difíciles de obtener y, hasta ahora, los astrónomos nunca habían observado directamente a más de un planeta orbitando una estrella similar al Sol. Las observaciones pueden ayudar a los astrónomos a entender cómo se formaron y evolucionaron los planetas alrededor de nuestro propio Sol.

Hace apenas unas semanas, ESO reveló el nacimiento de un sistema planetario a través de una nueva e impresionante imagen obtenida por el VLT. Ahora, el mismo telescopio, usando el mismo instrumento, ha tomado la primera imagen directa de un sistema planetario alrededor de una estrella como nuestro Sol, ubicado a unos 300 años luz de distancia y conocido como TYC 8998-760-1.

“Este descubrimiento es una instantánea de un entorno que es muy similar a nuestro Sistema Solar, pero en una etapa mucho más temprana de su evolución”, afirma Alexander Bohn, estudiante de doctorado de la Universidad de Leiden (Países Bajos), que dirigió la nueva investigación publicada hoy en The Astrophysical Journal Letters.

“Aunque los astrónomos han detectado indirectamente miles de planetas en nuestra galaxia, sólo una pequeña fracción de estos exoplanetas han sido captados con imagen directa”, dice el coautor, Matthew Kenworthy, profesor asociado de la Universidad de Leiden, y añade que “las observaciones directas son importantes en la búsqueda de entornos que puedan albergar vida”. La imagen directa de dos o más exoplanetas alrededor de la misma estrella es aún más rara; hasta ahora sólo se han observado dos de estos sistemas directamente, ambos alrededor de estrellas muy diferentes de nuestro Sol. La nueva imagen del VLT de ESO es la primera imagen directa de más de un exoplaneta alrededor de una estrella similar al Sol. El VLT de ESO también fue el primer telescopio en obtener una imagen directa de un exoplaneta, allá por 2004, cuando captó una mota de luz alrededor de una enana marrón, un tipo de estrella "fallida".

“Nuestro equipo ha podido captar la primera imagen de dos compañeros gigantes gaseosos que están orbitando a un joven análogo solar”, destaca Maddalena Reggiani, investigadora postdoctoral de KU Leuven (Bélgica) que también ha participado en el estudio. Los dos planetas se pueden ver en la nueva imagen como dos puntos brillantes de luz alejados de su estrella madre, que se encuentra en la parte superior izquierda de la imagen (haga clic en la imagen para verla completa). Al tomar diferentes imágenes en diferentes momentos, el equipo fue capaz de distinguir estos planetas de las estrellas de fondo.

Los dos gigantes gaseosos orbitan a su estrella anfitriona a distancias de 160 y de unas 320 veces la distancia Tierra-Sol. Esto sitúa a estos planetas mucho más lejos de su estrella de lo que están Júpiter o Saturno (también gigantes gaseosos), de nuestro Sol; se encuentran a sólo 5 y 10 veces la distancia Tierra-Sol, respectivamente. El equipo también descubrió que los dos exoplanetas son mucho más pesados que los de nuestro Sistema Solar, el planeta interior tiene 14 veces la masa de Júpiter y el externo seis veces.

El equipo de Bohn obtuvo imágenes de este sistema durante su búsqueda de planetas jóvenes y gigantes alrededor de estrellas como nuestro Sol, pero mucho más jóvenes. La estrella TYC 8998-760-1 tiene sólo 17 millones de años y se encuentra en la constelación austral de Musca (la mosca). Bohn lo describe como una “versión muy joven de nuestro propio Sol”.

Estas imágenes fueron posibles gracias al alto rendimiento del instrumento SPHERE, instalado en el VLT de ESO, en el desierto chileno de Atacama. SPHERE bloquea la brillante luz de la estrella usando un dispositivo llamado coronógrafo, permitiendo ver los planetas, cuya luz es mucho más debil. Mientras que los planetas más antiguos, como los de nuestro Sistema Solar, están demasiado fríos como para ser detectados con esta técnica, los planetas jóvenes son más calientes, y por lo tanto brillan más en el rango infrarrojo de la luz. Tomando varias imágenes durante el año pasado y analizando datos antiguos que se remontan a 2017, el equipo de investigación ha confirmado que los dos planetas son parte del sistema de la estrella.

Para que los astrónomos puedan confirmar si estos planetas se formaron en su ubicación actual, alejada de la estrella, o migraron desde otros lugares, serán necesarias más observaciones de este sistema, observaciones que podrán llevarse a cabo incluso con el futuro Telescopio Extremadamente Grande (ELT) de ESO. El ELT de ESO también ayudará a estudiar la interacción entre dos planetas jóvenes del mismo sistema. Bohn concluye afirmando que: “La posibilidad de que los instrumentos futuros, como los que estarán disponibles en el ELT, sean capaces de detectar incluso planetas de menor masa alrededor de esta estrella, marca un hito importante en la comprensión de los sistemas multi planetarios, con posibles implicaciones para la historia de nuestro propio Sistema Solar”.
 
Actualizado: 23/7/2020



sábado, 18 de julio de 2020

Cómo Observar el Cometa NEOWISE

Cómo Observar al Cometa NEOWISE 

 El Cometa C/2020 F3 (NEOWISE) en los cielos antes del amanecer el 9 de Julio de 2020, sobre Deer Valley, Utah. Image Credit: NASA

 

Los observadores del firmamento situados en el hemisferio norte están disfrutando de unas vistas espectaculares del cometa NEOWISE durante su paso por la Tierra. Mientras el cometa NEOWISE pasa “junto” a la Tierra a la cómoda (y segura) distancia de 103 millones de kilómetros, los aficionados podrán observarlo a lo largo del mes de Julio.

Para aquellos que quieran echar un vistazo al cometa NEOWISE antes de que se haya ido, hay varias oportunidades de observación en los próximos días, cuando será cada vez más visible poco después del atardecer en el cielo del noroeste. Si se mira al cielo sin la ayuda de herramientas de observación, el cometa NEOWISE probablemente se verá como una estrella borrosa con un poco de cola, por lo que se recomienda usar prismáticos o un pequeño telescopio para obtener las mejores vistas de este objeto.

Para aquellos que quieran ver al cometa NEOWISE a simple vista, esto es lo que deben hacer:

- Encuentre un lugar alejado de las luces de la ciudad con una vista despejada del cielo.

- Justo después del atardecer, mira debajo de la Osa Mayor en el cielo del noroeste.

- Si tiene unos prismáticos o un pequeño telescopio podrá obtener las mejores vistas de esta deslumbrante pantalla.

NEOWISWE atardecer

  Este gráfico muestra como se verá el cometa NEOWISE los próximos días justo después de la puesta de Sol. Image Credit: NASA/JPL-Caltech


El cometa C/2020 F3 NEOWISE debe su nombre a la misión Near-Earth Object Wide-field Infrared Survey Explorer de la NASA, que lo descubrió en Marzo de 2020. El cometa completó su perihelio, el punto más cercano al Sol a lo largo de su órbita, el 3 de Julio y ahora está adentrándose de nuevo en el sistema solar, por lo que no volveremos a verlo en unos 6.800 años.

Los cometas son los restos helados de la formación de planetas hace 4.600 millones de años, por lo que los científicos los consideran una suerte de cápsulas del tiempo cósmicas. Presentan una distintiva cola compuesta por granos de polvo que se desprenden del núcleo.

El sobrevuelo de un cometa sobre la Tierra ofrece una rara oportunidad para observar y recabar datos sobre estas cápsulas del tiempo. Numerosas naves han observado el cometa NEOWISE, incluido el Observatorio Heliosférico y Solar de la ESA/NASA, así como los astronautas a bordo de la Estación Espacial Internacional.
 
Actualizado: 15/7/2020



viernes, 26 de junio de 2020

TESS y Spitzer Descubren un Planeta Orbitando una Joven e Inusual Estrella



Durante más de una década, los astrónomos han buscado planetas orbitando a AU Microscopii, una estrella cercana que sigue rodeada por un disco de desechos remanente de su formación. Ahora, usando datos del Satélite TESS y del ya retirado Telescopio Espacial Spitzer, unos científicos han descubierto un planeta tan grande como Neptuno que gira alrededor de la joven estrella en poco más de una semana.

El sistema, conocido como AU Mic, ofrece una oportunidad única para estudiar planetas y sus atmósferas y entender cómo se forman, evolucionan e interactúan con sus estrellas.

"AU Mic es una estrella joven y próxima de tipo M, o enana roja. Está rodeada por un enorme disco de escombros en el que se han detectado agrupaciones móviles de polvo, y ahora, gracias a TESS y Spitzer, un planeta con una cuantificación de tamaño directa", dijo Bryson Cale, estudiante de doctorado en la Universidad George Mason en Fairfax, Virginia. "No hay otro sistema conocido que cumpla con todos estos singulares criterios".

Este nuevo planeta, AU Mic b, se describe en un artículo científico coescrito por Cale y liderado por su tutor Peter Plavchan, profesor auxiliar de física y astronomía en George Mason. El hallazgo fue divulgado el miércoles 24 de junio en Nature.

AU Mic es una enana roja fría con una edad estimada de 20 a 30 millones de años, lo que le convierte en un bebé estelar en comparación con nuestro Sol, que es al menos 150 veces más viejo. La estrella es tan joven que principalmente brilla por el calor generado por su propia gravedad al tirar de ella hacia adentro y comprimirla. Menos del 10% de su energía proviene de la fusión nuclear de hidrógeno en helio, el proceso que potencia a estrellas como nuestro Sol.

El sistema se encuentra a 31,9 años luz de distancia, en la constelación austral del Microscopio. Forma parte de una colección cercana de estrellas denominadas grupo móvil Beta Pictoris, que toma su nombre de una estrella tipo A más grande y caliente que alberga dos planetas y está igualmente rodeada por un disco de desechos.

Aunque los sistemas tienen la misma edad, sus planetas son marcadamente diferentes. El planeta AU Mic b casi abraza su estrella, completando una órbita cada 8,5 días. Pesa 58 veces menos que la Tierra, lo que lo coloca en la categoría de mundos similares a Neptuno. En contraste, Beta Pictoris b y c son al menos 50 veces más grandes que AU Mic b y tardan respectivamente 21 y 3,3 años en orbitar su estrella.

"Creemos que AU Mic b se formó lejos de su estrella y migró hacia su órbita actual, algo que puede ocurrir cuando los planetas interactúan gravitacionalmente con un disco de gas o con otros planetas", explicó Thomas Barclay, coautor e investigador asociado de la Universidad de Maryland, Condado de Baltimore, y científico asociado del proyecto TESS en el Centro de Vuelo Espacial Goddard de la NASA en Greenbelt, Maryland. “En cambio, la órbita de Beta Pictoris b no parece haber migrado mucho. Las diferencias entre estos sistemas de edad similar pueden decirnos mucho sobre cómo se forman y migran los planetas".

Detectar planetas alrededor de estrellas como AU Mic plantea un desafío particular. Estas turbulentas estrellas tienen campos magnéticos fuertes y pueden estar cubiertas de puntos estelares —regiones más frías, oscuras y altamente magnéticas, similares a las manchas solares— que frecuentemente expulsan poderosos destellos estelares. Las manchas y sus destellos contribuyen a los cambios de brillo de la estrella.

Durante Julio y Agosto de 2018, cuando TESS observaba AU Mic, la estrella produjo numerosas erupciones de las cuales, algunas fueron más poderosas que las erupciones más fuertes registradas en el Sol. El equipo realizó un análisis detallado para sustraer estas perturbaciones de los datos de TESS.

Cuando, desde nuestra perspectiva, un planeta pasa por delante de su estrella en un evento conocido como tránsito, su paso ocasiona una clara disminución en el brillo de la estrella. TESS monitorea extensas franjas del cielo, llamadas sectores, durante 27 días continuos para cada sector. En el curso de esta larga observación, las cámaras realizan capturas regulares que permiten a los científicos monitorear los cambios de brillo estelar.

Bajadas regulares en el brillo estelar sugieren la posibilidad de un planeta en tránsito. Usualmente se necesita observar al menos dos tránsitos para identificar la presencia de un planeta.

"Desafortunadamente, el segundo de los tres tránsitos ocurridos en el lapso de observación de TESS aconteció cerca de su punto más próximo a la Tierra. En ese momento, TESS no observaba porque estuvo ocupada transmitiendo todos los datos almacenados", dijo Diana Dragomir, coautora y profesora asistente de investigación de la Universidad de Nuevo México en Albuquerque. "Para llenar el vacío, se concedió a nuestro equipo tiempo de observación con Spitzer, que registró dos tránsitos adicionales en 2019 y nos permitió confirmar el período orbital de AU Mic b”.

Spitzer fue un observatorio infrarrojo multipropósito que funcionó desde el 2003 hasta su retirada de servicio el pasado 30 de Enero de 2020. La misión demostró ser especialmente hábil en detectar y estudiar exoplanetas alrededor de estrellas frías. Spitzer envió observaciones de AU Mic durante su último año.

Debido a que la cantidad de luz bloqueada por un tránsito depende del tamaño del planeta y la distancia orbital, los tránsitos registrados por TESS y Spitzer proporcionaron una medida directa del tamaño de AU Mic b. El análisis de estas mediciones muestra que el planeta es 8% más grande que Neptuno.

 TESS y Spitzer Descubren un Planeta Orbitando una Joven e Inusual Estrella

 El satélite TESS y el recién retirado Telescopio Espacial Spitzer de la NASA han encontrado un joven planeta del tamaño de Neptuno orbitando AU Microscopii, una estrella tipo M cercana que está rodeada por un vasto disco de desechos. Image Credit: GSFC/NASA

 Las observaciones realizadas con instrumentos en telescopios terrestres proporcionan el límite máximo para la masa de un planeta. A medida que un planeta recorre su órbita, su gravedad estira a la estrella anfitriona, que en respuesta se mueve ligeramente. Los sensibles instrumentos de los grandes telescopios pueden detectar la velocidad radial de la estrella, así como su movimiento de ida y vuelta a lo largo de nuestra línea de visión. Combinando observaciones del Observatorio W. M. Keck y del Telescopio Infrarrojo de la NASA en Hawai y del Observatorio Europeo Austral en Chile, el equipo concluyó que AU Mic b tiene una masa menor que 58 Tierras.
Este descubrimiento demostró la capacidad de TESS para proporcionar nueva información sobre estrellas bien estudiadas como AU Mic, donde más planetas pueden estar aguardando ser descubiertos.

"Hay un posible evento de tránsito adicional en los datos de TESS, y es de esperar que TESS vuelva a visitar AU Mic a finales de este año en su misión ampliada", dijo Plavchan. "Seguimos monitoreando la estrella con mediciones precisas de velocidad radial, por lo que recomendamos mantenerse atentos”.

Durante décadas, AU Mic intrigó a los astrónomos como un posible hogar para planetas gracias a su proximidad, juventud y su claro disco de desechos. Ahora que TESS y Spitzer hallaron uno, la historia cierra ese capítulo. AU Mic es un sistema referente, un laboratorio cercano para comprender la formación y evolución de estrellas y planetas que será estudiado durante décadas.

sábado, 13 de junio de 2020

La Sonda Espacial IBEX Ofrece 11 Años de Cambios en el Límite del Espacio Interestelar

 

Mucho, mucho más allá de las órbitas de los planetas se encuentran los contornos borrosos de la burbuja magnética en el espacio que llamamos hogar.

Esta es la heliosfera, la gran burbuja que genera el campo magnético del Sol y envuelve a todos los planetas. Los bordes de esta burbuja cósmica no son fijos. En respuesta a las bocanadas y suspiros del Sol, se encogen y se estiran con los años.

Ahora, por primera vez, los científicos han utilizado un ciclo solar completo de datos de la nave espacial IBEX de la NASA para estudiar cómo cambia la heliosfera con el tiempo. Los ciclos solares duran aproximadamente 11 años, a medida que el Sol cambia de temporadas de actividad alta a baja, y vuelve a la alta nuevamente. Con el largo historial de IBEX, los científicos estaban ansiosos por examinar cómo se desarrollan los cambios de humor del Sol en el borde de la heliosfera. Los resultados muestran la heliosfera externa cambiante con gran detalle, dibujan hábilmente la forma de la heliosfera (un tema de debate en los últimos años) y dan pistas sobre los procesos detrás de una de sus características más desconcertantes. Estos hallazgos, junto con un conjunto de datos recién ajustados, se publican en The Astrophysical Journal Supplements el 10 de junio de 2020.

IBEX ha estado observando el límite del espacio interestelar durante más de 11 años, mostrándonos dónde encaja nuestro vecindario cósmico con el resto de la galaxia. "Es una misión muy pequeña", dijo David McComas, el investigador principal de la misión en la Universidad de Princeton en Nueva Jersey. IBEX es tan grande como un neumático de autobús. "Ha sido enormemente exitoso, durando mucho más de lo que nadie había previsto. Ahora tenemos la suerte de tener todo un ciclo solar de observaciones".

La heliosfera se llena con el viento solar, el flujo constante de partículas cargadas del Sol. El viento solar se precipita en todas las direcciones, a un millón de millas por hora, hasta que choca contra el medio interestelar, vientos de otras estrellas que llenan el espacio entre ellos.

A medida que el Sol atraviesa el medio interestelar, genera una ola caliente y densa, muy parecida a la ola en la parte delantera de un barco que atraviesa el mar. Nuestro vecindario cósmico se llama 

Nube Interestelar Local o Local Fluff, por la nube de gases supercalientes que florece a nuestro alrededor. Donde el viento solar y la nube local se unen forma el borde de la heliosfera, llamada heliopausa. Justo dentro de eso se encuentra una región turbulenta llamada heliofunda.

Las partículas llamadas átomos neutros energéticos, o ENAs, que se forman en esta región distante del espacio son el foco de los estudios de IBEX. Se crean cuando partículas calientes y cargadas como las del viento solar chocan con neutros fríos como los que fluyen desde el espacio interestelar. 

Las partículas del viento solar pueden atrapar electrones de los átomos interestelares pesados, volviéndose neutros.

El viaje de estas partículas comienza mucho antes de que IBEX las detecte. Más allá de los planetas, más allá del cinturón de asteroides y el Cinturón de Kuiper, hasta el borde de la heliosfera, la ráfaga de viento solar tarda aproximadamente un año en correr 100 veces la distancia entre el Sol y la Tierra. 

En el camino, el viento solar recoge átomos ionizados de gases interestelares que se han introducido en la heliosfera. El viento solar que llega al borde no es el mismo viento que dejó el Sol un año antes.

Las partículas del viento solar podrían pasar otros seis meses deambulando por el caos de heliofunda, el abismo entre los dos límites exteriores de la heliosfera. Inevitablemente, algunos chocan con gases interestelares y se convierten en neutros energéticos. Las partículas neutras tardan cerca de otro año en el viaje de regreso, atravesando el espacio desde el borde de la heliosfera para llegar a IBEX, si las partículas se dirigían precisamente en la dirección correcta. De todas las partículas neutras formadas, solo unas pocas llegan a IBEX. El viaje completo dura de dos a tres años para las partículas de mayor energía en el rango de observación de IBEX, y aún más en energías más bajas o regiones más distantes.

IBEX aprovecha el hecho de que los átomos neutros como estos no son desviados por el campo magnético del Sol: partículas neutras frescas unidas lejos de las colisiones en casi una línea recta.

IBEX examina los cielos en busca de partículas, observando su dirección y energía. La nave espacial solo detecta aproximadamente uno cada dos segundos. El resultado es un mapa del límite interestelar, elaborado a partir del mismo principio que utiliza un murciélago para ecolocalizarse a lo largo de la noche: monitorear una señal entrante para aprender más sobre los alrededores. Al estudiar de dónde provienen los neutros y cuándo, IBEX puede rastrear los límites remotos de nuestra heliosfera.

"Somos muy afortunados de observar esto desde el interior de la heliosfera", dijo Justyna Sokol, científica visitante del equipo de Princeton. “Estos son procesos que ocurren a distancias muy pequeñas. Cuando observas otras estrellas que están muy lejos, observas distancias de años luz, desde fuera de sus astrosferas". Incluso la distancia entre el Sol y la punta de la heliosfera es pequeña en comparación con muchos, muchos años luz.

Utilizando los datos de más de 11 años de IBEX, McComas y su equipo pudieron estudiar los cambios que evolucionan con el tiempo y son clave para comprender nuestro lugar en el espacio.

El viento solar es constante, pero el viento no es estable. Cuando el viento sopla, la heliosfera se infla como un globo, y las partículas neutrales surgen en las franjas exteriores. Cuando el viento se calma, el globo se contrae; las partículas neutras disminuyen. La consiguiente oscilación de partículas neutras, informaron los científicos, se hizo eco constantemente de dos a tres años después de los cambios en el viento, lo que refleja su viaje hacia el borde de esta burbuja y de regreso.

De 2009 a 2014, el viento soplaba bastante bajo y constante, una brisa suave. La heliosfera se contrajo. Luego llegó una sorpresa en el viento solar, como si el Sol lanzara un gran suspiro. A finales de 2014, una nave espacial de la NASA en órbita alrededor de la Tierra detectó el aumento de la presión del viento solar en aproximadamente un 50% (desde entonces se ha mantenido alto durante varios años).

Dos años más tarde, el viento solar ondulante provocó una ráfaga de partículas neutras en la heliofunda. Otros dos años después, llenaron la mayor parte de la punta de la heliosfera. Finalmente, se alzaron sobre los polos norte y sur de la heliosfera.

Estos cambios no fueron simétricos. Cada golpe observado trazó las peculiaridades de la forma de la heliosfera. Los científicos se sorprendieron de cuán claramente vieron la marea del viento solar empujando la heliopausa.

"El tiempo y las partículas neutrales realmente han pintado las distancias en la forma de la heliosfera para nosotros", dijo McComas.

IBEX todavía no ha observado los efectos de este golpe cósmico desde el extremo posterior de la heliosfera, la heliocola. Eso significa que el extremo de la cola está mucho más lejos del Sol que el frente; esas partículas están en un viaje mucho más largo. Tal vez la marejada eólica solar todavía se precipita hacia la cola, o tal vez las partículas neutras ya están regresando. En los próximos años, el equipo de IBEX estará atento a las señales de su regreso de la cola.

"La naturaleza creó este experimento perfecto para que entendamos mejor este límite", dijo Szalay. 

"Tenemos que ver qué sucede cuando esta gran cosa, el impulso del viento solar, cambie".

En general, esto pinta una imagen de la heliosfera con forma de cometa. La forma de la heliosfera ha sido un tema de debate en los últimos años. Algunos han argumentado que nuestra burbuja en el espacio es esférica como un globo; otros sugirieron que está más cerca de un cruasán. Pero en este estudio, dijo McComas, los datos del IBEX muestran claramente que la respuesta de la heliosfera al impulso del viento solar fue asimétrica, por lo que la propia heliosfera también debe ser asimétrica. 

El Sol está situado cerca del frente, y cuando el Sol se precipita por el espacio, la heliocola se arrastra mucho más atrás, algo así como la cola rayada de un cometa.

Los muchos años de datos de IBEX también han acercado a los científicos a una explicación de una de las características más desconcertantes de la heliosfera, conocida como la franja IBEX. La franja sigue siendo uno de los mayores descubrimientos de IBEX. Anunciado en 2009, se refiere a una vasta franja diagonal de neutros energéticos, pintados en el frente de la heliosfera. Hace mucho que los científicos están desconcertados: ¿por qué una parte del límite debería ser tan diferente del resto?

Con el tiempo, IBEX ha indicado que lo que forma la franja es muy diferente de lo que forma el resto del cielo interestelar. Está conformada por la dirección del campo magnético interestelar. Pero, ¿cómo se producen las partículas de la franja? Ahora, los científicos informan que es muy probable que un proceso secundario sea responsable, lo que hace que el viaje de un cierto grupo de partículas energéticas neutras se duplique aproximadamente.

Después de convertirse en neutrales energéticos, en lugar de rebotar hacia IBEX, este grupo de partículas salen disparadas en dirección opuesta, a través de la heliopausa y hacia el espacio interestelar. Allí, se toparían con la Nube Interestelar Local, navegando hasta que algunos chocaran inevitablemente con partículas cargadas que pasaran, perdiendo un electrón una vez más y quedando atados al campo magnético circundante.

Pasan otros dos años más o menos, y las partículas cargadas pueden chocar una vez más con pares más lentos, robando electrones como lo han hecho antes. Después de esta breve migración más allá de la heliosfera, los neutrales energéticos nacidos dos veces podrían eventualmente volver a entrar y regresar a casa.

Los datos extendidos de IBEX ayudaron a los científicos a conectar la franja con el largo recorrido interestelar de las partículas. Las partículas que forman la franja han viajado unos dos años más que el resto de las partículas neutras observadas. Cuando se trataba del pico del viento solar, la franja tardó otros dos años después del resto de la heliosfera para comenzar a responder.

Superando por mucho su misión inicial de dos años, IBEX pronto se unirá a otra misión de la NASA, 

IMAP, para la cual McComas también sirve como investigador principal. El lanzamiento de la misión está programado para fines de 2024.

"IMAP presenta una oportunidad perfecta para estudiar, con gran resolución y sensibilidad lo que IBEX ha comenzado a mostrarnos, para que realmente obtengamos una comprensión detallada de la física", dijo McComa

 Actualizado: 11/6/2020

sábado, 6 de junio de 2020

El Hubble Hace un Hallazgo Sorprendente Sobre el Universo Temprano

El Hubble Hace un Hallazgo Sorprendente Sobre el Universo Temprano 

 Nuevos resultados del telescopio espacial Hubble sugieren que la formación de las primeras estrellas y galaxias en el universo temprano tuvo lugar antes de lo que se pensaba. Créditos: ESA/Hubble/M. Kornmesser/NASA


Nuevos resultados del telescopio espacial Hubble de la NASA/ESA sugieren que la formación de las primeras estrellas y galaxias del universo temprano tuvo lugar antes de lo que se creía. Un equipo europeo de astrónomos no ha hallado evidencias de la primera generación de estrellas, conocidas como “población III”, tras remontarse hasta cuando el universo tenía tan solo 500 millones de años de antigüedad.

El estudio, liderado por la becaria de investigación de la ESA Rachana Bhatawdekar, sondeó el universo temprano entre 500 y 1.000 millones de años tras el Big Bang, investigando las vistas tomadas por Hubble del cúmulo galáctico MACSJ0416, que aparece en la imagen, y su campo paralelo, una región cercana en el firmamento capturada con el mismo tiempo de exposición que el propio cúmulo. El equipo combinó estas observaciones, obtenidas como parte del programa Hubble Frontier Fields, para producir las observaciones más profundas jamás realizadas de cúmulos galácticos y las galaxias situadas por detrás, magnificadas por el efecto de lente gravitacional, con datos de apoyo del telescopio espacial Spitzer de la NASA y el Telescopio Muy Grande (VLT) del Observatorio Europeo Austral (ESO).

La exploración de las primeras galaxias sigue siendo un reto importante de la astronomía moderna. 

No sabemos cómo ni cuándo se formaron las primeras estrellas y galaxias del universo. El telescopio espacial Hubble puede abordar estas cuestiones mediante observaciones de campo profundo, que permiten a los astrónomos ver el universo hasta 500 millones de años después del Big Bang.

Rachana y sus colaboradores se habían propuesto estudiar la primera generación de estrellas del universo temprano, también conocidas como población III. Surgidas a partir del material primigenio que emergió del Big Bang, estas estrellas deberían estar compuestas únicamente por hidrógeno, helio y litio, los únicos elementos que existían antes de que los procesos desencadenados en los núcleos de dichas estrellas pudieran dar lugar a elementos más pesados, como oxígeno, nitrógeno, carbono y hierro.

Gracias a una nueva técnica que elimina la luz de galaxias brillantes en primer término de un cúmulo, el equipo descubrió galaxias de fondo con masas inferiores a lo observado hasta el momento con Hubble, a una distancia correspondiente a cuando el universo tenía menos de 1.000 millones de años. 

En el intervalo cósmico estudiado, no encontraron evidencias de la población III.

Estos resultados muestran que las galaxias debieron formarse mucho antes de lo que los astrónomos creían. También sugieren que la formación más temprana de estrellas y galaxias se produjo mucho antes de lo que se puede estudiar con el telescopio espacial Hubble, abriendo así un campo interesantísimo para seguir investigando con el próximo telescopio espacial James Webb de la NASA/ESA/CSA: las primeras galaxias del universo.

Actualizado: 4/6/2020

sábado, 30 de mayo de 2020

El Satélite ICESat-2 Mide el Espesor del Hielo Marino del Océano Ártico




El hielo marino del Ártico ayuda a mantener la Tierra fría, ya que su superficie brillante refleja la energía del Sol de vuelta al espacio. Cada año, los científicos usan múltiples satélites y conjuntos de datos para rastrear qué parte del Océano Ártico está cubierta de hielo marino, pero su espesor es más difícil de medir. Los resultados iniciales del satélite ICESat-2 de la NASA sugieren que el hielo marino ha disminuido hasta en un 20% desde el final de la primera misión ICESat (2003-2009), en contra de los estudios existentes que afirmaban que el espesor del hielo marino se había mantenido relativamente constante en la última década.

ICESat-2 tiene un altímetro láser, que utiliza pulsos de luz para medir con precisión la altura hasta aproximadamente una pulgada. Cada segundo, el instrumento envía 10.000 pulsos de luz que rebotan en la superficie de la Tierra y regresan al satélite registrando el tiempo que se tarda en hacer ese viaje de ida y vuelta. La luz se refleja en la primera sustancia que golpea, ya sea agua abierta, hielo marino desnudo o nieve que se ha acumulado sobre el hielo, por lo que los científicos usan una combinación de mediciones ICESat-2 y otros datos para calcular el espesor del hielo marino.

Al comparar los datos de ICESat-2 con las mediciones de otro satélite, los investigadores también crearon los primeros mapas basados en satélites de la cantidad de nieve que se acumuló sobre el hielo marino del Ártico, rastreando este material aislante.

"La bolsa de hielo marino del Ártico ha cambiado drásticamente desde que comenzó el monitoreo desde los satélites hace más de cuatro décadas", dijo Nathan Kurtz, científico adjunto del proyecto ICESat-2 en el Centro de Vuelo Espacial Goddard de la NASA en Greenbelt, Maryland. "La extraordinaria precisión y la capacidad de medición durante todo el año de ICESat-2 proporciona una nueva herramienta emocionante que nos permite comprender mejor los mecanismos que conducen a estos cambios, y lo que esto significa para el futuro".

El espesor del hielo marino del Ártico disminuyó drásticamente en la primera década del siglo XXI, según lo medido por la primera misión ICESat de 2003 a 2009 y otros métodos. El CryoSat-2 de la Agencia Espacial Europea, lanzado en 2010, ha medido un espesor relativamente constante en el hielo marino del Ártico desde entonces. Con el lanzamiento de ICESat-2 en 2018, los investigadores analizaron esta nueva forma de medir el espesor del hielo marino para avanzar en el estudio de este registro de datos.

"No podemos obtener el grosor solo de ICESat-2, pero podemos utilizar otros datos para derivar la medición", dijo Petty. Por ejemplo, los investigadores restan la altura de la nieve sobre el hielo marino utilizando modelos informáticos que estiman las nevadas. "Los primeros resultados fueron muy alentadores".

En su estudio, publicado recientemente en el Journal of Geophysical Research: Oceans, Petty y sus colegas generaron mapas del espesor del hielo marino del Ártico desde octubre de 2018 hasta abril de 2019 y vieron el hielo espesándose durante el invierno como se esperaba.

Sin embargo, en general, los cálculos con ICESat-2 encontraron que el hielo era más delgado durante ese período de tiempo que lo que los investigadores encontraron utilizando datos de CryoSat-2. El grupo de Petty también descubrió una disminución pequeña pero significativa del 20% en el grosor del hielo marino al comparar las mediciones ICESat-2 de febrero/marzo de 2019 con las calculadas usando ICESat en febrero/marzo de 2008, una disminución que los investigadores de CryoSat-2 no ven en su datos.

Petty dijo que estos son dos enfoques muy diferentes para medir el hielo marino, cada uno con sus propias limitaciones y beneficios. CryoSat-2 lleva un radar para medir la altura, en oposición al lidar de ICESat-2, y el radar pasa principalmente a través de la nieve para medir la parte superior del hielo. 

Las mediciones de radar como las del CryoSat-2 podrían ser arrojadas por el agua de mar que inunda el hielo, señaló. Además, ICESat-2 sigue siendo una misión joven y los algoritmos informáticos aún se están perfeccionando, dijo, lo que en última instancia podría cambiar los hallazgos de grosor.

"Creo que vamos a aprender mucho al tener estos dos enfoques para medir el espesor del hielo. Puede que nos estén dando un límite superior e inferior en el grosor del hielo marino, y la respuesta correcta probablemente esté en algún punto intermedio ”, dijo Petty. "Hay razones por las cuales las estimaciones de ICESat-2 podrían ser bajas, y razones por las que las de CryoSat-2 podrían ser altas, y necesitamos hacer más trabajo para comprender y alinear estas mediciones entre sí".

Con ICESat-2 y CryoSat-2 utilizando dos métodos diferentes para medir el espesor del hielo: uno mide la parte superior de la nieve, el otro el límite entre el fondo de la capa de nieve y la parte superior de la capa de hielo, los investigadores se dieron cuenta de que podían combinarse los dos para calcular la profundidad de la nieve.

"Esta es la primera vez que podemos obtener profundidad de nieve en toda la capa de hielo marino del Océano Ártico", dijo Ron Kwok, científico de hielo marino en el Laboratorio de Propulsión a Chorro de la NASA en el sur de California y autor de otro estudio en JGR Oceans. "La región ártica es un desierto, pero la nieve que obtenemos es muy importante en términos de clima y hielo marino aislante".

El estudio encontró que la nieve comienza a acumularse lentamente en octubre, cuando el hielo recién formado tiene un promedio de aproximadamente 5 centímetros de nieve y el hielo de varios años tiene un promedio de 14 centímetros de nieve. Las nevadas se acumulan más tarde en el invierno en diciembre y enero y alcanzan su profundidad máxima en abril, cuando el hielo relativamente nuevo tiene un promedio de 17 centímetros y el hielo más viejo tiene un promedio de 27 centímetros de nieve.

Cuando la nieve se derrite en la primavera, puede acumularse en el hielo marino: esos estanques de fusión absorben el calor del Sol y pueden calentar el hielo más rápido, solo uno de los impactos de la nieve sobre el hielo.
 

El Satélite ICESat-2 Mide el Espesor del Hielo Marino del Océano Ártico 
Los científicos han utilizado el satélite ICESat-2 de la NASA para medir el grosor del hielo marino Ártico, así como la profundidad de la nieve en el hielo.‎ Image Credit: NASA/Jeremy Harbeck‎


 Actualizado: 15/5/2020