sábado, 30 de junio de 2018

Detectan la Presencia de Moléculas Orgánicas Complejas en Encélado

28.06.18.- Datos de la nave espacial Cassini de la NASA revelan moléculas orgánicas complejas que se originan en la luna helada de Saturno, Encélado, reforzando la idea de que este mundo oceánico alberga condiciones adecuadas para la vida. Los resultados de la investigación muestran moléculas mucho más grandes y pesadas que nunca antes.


Potentes fuentes hidrotermales mezclan material del núcleo poroso lleno de agua de la luna con agua de la subsuperficie masiva de la luna, y se libera en el espacio, en forma de vapor de agua y granos de hielo. Un equipo dirigido por Frank Postberg y Nozair Khawaja de la Universidad de Heidelberg, Alemania, continúa examinando la composición del hielo expulsado y recientemente ha identificado fragmentos de moléculas orgánicas grandes y complejas.


Previamente, Cassini había detectado pequeñas moléculas orgánicas relativamente comunes en Encélado que eran mucho más pequeñas. Las moléculas complejas que comprenden cientos de átomos son raras más allá de la Tierra. La presencia de grandes moléculas complejas, junto con agua líquida y actividad hidrotermal, refuerza la hipótesis de que el océano de Encélado puede ser un ambiente habitable para la vida.
Tales moléculas grandes pueden ser creadas por procesos químicos complejos, incluidos los relacionados con la vida, o pueden provenir de material primordial en algunos meteoritos.


En Encélado, lo más probable es que provengan de la actividad hidrotermal que impulsa la química compleja en el centro de la luna, dijo Postberg.
"En mi opinión, los fragmentos que encontramos son de origen hidrotermal; en las altas presiones y temperaturas cálidas que esperamos allí, es posible que surjan moléculas orgánicas complejas ", dijo Postberg.


El material orgánico se inyecta en el océano mediante respiraderos hidrotermales en el suelo del océano de Encelado, algo parecido a los sitios hidrotermales que se encuentran en el fondo de los océanos en la Tierra, que son uno de los entornos posibles que los científicos investigan para la emergencia de la vida en nuestro propio planeta.


En Encélado, burbujas de gas que se alzan a través de kilómetros en el océano podrían sacar materia orgánica de las profundidades, donde podrían formar una delgada película flotando en la superficie del océano y en grietas de ventilación, en el interior de la luna, debajo de su caparazón helado.


Después de elevarse cerca de la parte superior del océano, las burbujas pueden reventar o dispersar los compuestos orgánicos, donde fueron detectados por Cassini.



Imagen del polo sur de Encélado, en la que se aprecian los chorros de material que están siendo expulsados desde el interior de esta luna de Saturno. Image Crédit: NASA/JPL-Caltech/Space Science Institute

sábado, 23 de junio de 2018

Una Estrella, Devorada por un Tipo de Agujero Negro Poco Conocido

20.06.18.- El observatorio XMM-Newton de la ESA ha descubierto el candidato más prometedor a un tipo de fenómeno cósmico muy poco común y esquivo: un agujero negro de masa intermedia en trance de desgarrar y devorar una estrella cercana.


El Universo alberga distintos tipos de agujeros negros: las estrellas masivas generan agujeros negros de masa estelar cuando mueren, mientras que las galaxias tienen en su centro agujeros negros supermasivos, con masas equivalentes a millones e incluso miles de millones de soles.


Entre ambos extremos encontramos un miembro discreto de la familia de los agujeros 
negros: los agujeros negros de masa intermedia, considerados el germen de futuros agujeros negros supermasivos. Resultan especialmente esquivos, por lo que solo se han llegado a detectar muy pocos candidatos firmes.


Ahora, un equipo de investigadores ha encontrado un signo de actividad claro gracias a datos del observatorio espacial de rayos X XMM-Newton de la ESA, así como del observatorio de rayos X Chandra y el telescopio de rayos X Swift de la NASA. Estos detectaron una enorme emisión de radiación en los márgenes de una galaxia distante, generada cuando una estrella pasó demasiado cerca de un agujero negro y este la devoró.

“Es realmente emocionante: hasta ahora no se había visto un agujero negro de este tipo”, afirma el investigador principal, Dacheng Lin, de la Universidad de New Hampshire (Estados Unidos).

“Aunque se han llegado a descubrir algunos, en general se trata de un fenómeno muy poco común y muy buscado. Este es el mejor candidato a agujero negro de masa intermedia observado hasta la fecha”.


Se cree que este tipo de agujero se puede formar por varias vías. Un escenario de formación sería la rápida fusión de estrellas masivas situadas en cúmulos estelares densos, por lo que los centros de dichos cúmulos serían los lugares más adecuados para buscarlas. 

No obstante, para cuando estos agujeros negros se han formado, apenas queda gas, por lo que los agujeros negros no tienen materia que consumir y, por lo tanto, la radiación que emiten es muy tenue, lo que a su vez hace que sean muy difíciles de detectar.

“Uno de los pocos métodos que podemos utilizar para localizar un agujero negro de masa intermedia es esperar a que una estrella pase cerca y sufra una perturbación; de esta forma, se vuelve a ‘despertar el apetito’ del agujero negro y emite una fulguración como la que hemos observado”, añade Lin.

“Hasta ahora, este tipo de evento solo se ha visto claramente en el centro de una galaxia, no en sus márgenes”.


Lin y sus colegas cribaron datos de XMM-Newton para encontrar el candidato. Lo identificaron en observaciones de una gran galaxia a unos 740 millones de años luz, realizadas entre 2006 y 2009 como parte de un estudio de galaxias, y en datos adicionales de Chandra (2006 y 2016) y Swift (2014).

“También miramos imágenes de la galaxia tomadas por otros telescopios para ver cuál era el aspecto óptico de la emisión”, explica Jay Strader, de la Universidad Estatal de Michigan (Estados Unidos) y coautor del estudio.

“Detectamos el brillo provocado por el destello de la fuente en dos imágenes de 2005: era mucho más azul y brillante de lo que se veía tan solo unos años antes. Al comparar todos los datos, determinamos que la pobre estrella debió de sufrir una perturbación en octubre de 2003 en nuestro tiempo, y emitió una explosión de energía que fue decayendo a lo largo de la siguiente década”.


Los científicos creen que la estrella fue desgarrada por un agujero negro con una masa cincuenta mil veces mayor que la de nuestro Sol.


Estas emisiones procedentes de estrellas no suelen provenir de este tipo de agujeros negros, por lo que este descubrimiento sugiere que podría haber más en estado inactivo, escondidas en la periferia de las galaxias por todo el Universo local.

“Este candidato se descubrió gracias a un estudio exhaustivo del catálogo de fuentes de rayos X de XMM-Newton que, repleto de datos de alta calidad que abarcan grandes áreas del firmamento, resultó esencial para determinar el tamaño del agujero negro e identificar qué provocó la emisión de radiación”, apunta Norbert Schartel, científico de la ESA para el proyecto XMM-Newton.

“El catálogo de fuentes de rayos X de XMM-Newton, con más de medio millón de fuentes, es hoy en día el mayor de su clase: objetos exóticos como el identificado en nuestro estudio permanecen ocultos y a la espera de su descubrimiento mediante una exhaustiva minería de datos”, añade la coautora Natalie Webb, directora del Centro Científico para el Estudio de XMM-Newton en el Instituto de Investigación de Astrofísica y Planetología (IRAP) de Toulouse (Francia).

“Saber más sobre estos objetos y sus fenómenos asociados es clave para que entendamos los agujeros negros. En la actualidad, nuestros modelos podrían parecerse a un escenario en el que una civilización alienígena observa la Tierra y ve a los abuelos que llevan a sus nietos a la guardería: asumirían que falta algo en su modelo de la vida humana, pero sin observar ese eslabón intermedio no podrían estar seguros de ello. Este hallazgo es sumamente importante y muestra que el método utilizado para el descubrimiento es correcto”, concluye Norbert.


Image Credit: NASA/ESA

sábado, 16 de junio de 2018

La Antártida Hace que Suba el Nivel del Mar








14.06.18.- En un gran esfuerzo colaborativo, científicos de todo el mundo han utilizado datos satelitales para revelar que el deshielo de la Antártida no solo ha hecho aumentar el nivel del mar 7,6 cm desde 1992, sino que, sobre todo, casi la mitad de esta subida se ha producido en los últimos cinco años. 


Andrew Shepherd, de la Universidad de Leeds (Reino Unido), y Erik Ivins, del Laboratorio de Propulsión a Reacción (JPL) de la NASA, han dirigido a un grupo de 84 científicos procedentes de 44 organismos internacionales en un estudio que ha dado lugar a la panorámica más completa hasta el momento de los cambios en el manto de hielo antártico.


Su investigación, publicada en Nature, muestra que hasta 2012, cuando se llevó a cabo el último estudio de este tipo, la Antártida perdía 76.000 millones de hielo al año. Esto hacía que el nivel de los mares subiera a un ritmo de 0,2 mm por año.
No obstante, desde entonces la Antártida ha ido perdiendo hielo a una velocidad tres veces mayor.


Entre 2012 y 2017, la Antártida perdió 219.000 millones de toneladas de hielo al año, por lo que el nivel del mar aumentó a un ritmo de 0,6 mm anuales.


Esta información resulta clave para comprender cómo el cambio climático está afectando a la parte más remota del planeta y cómo esto influye en el resto del mundo.


El profesor Shepherd afirma: “Llevábamos mucho tiempo sospechando que los cambios en el clima terrestre afectan a las capas de hielo polares. Gracias a los satélites lanzados por nuestras agencias espaciales, ahora podemos hacer un seguimiento fiable de la desaparición del hielo y de su contribución al nivel del mar”.

“Según nuestros análisis, se ha producido una aceleración en la pérdida del hielo en la Antártida durante la última década, lo que está provocando que el nivel del mar aumente hoy a mayor velocidad que en ningún otro momento de los últimos 25 años”. 

“Esto debe preocupar a los gobiernos a los que confiamos la protección de nuestras ciudades y comunidades costeras”.


Aunque para el estudio se han utilizado datos de varios satélites, han resultado de especial utilidad CryoSat y la misión Sentinel-1 de Copernicus, de la ESA.


Equipado con un altímetro radar, CryoSat está diseñado para medir los cambios en la altura del hielo, lo que se utiliza para calcular cambios en su volumen. También está concebido para medir cambios en los márgenes de los mantos de hielo, donde se producen partos en forma de iceberg.


Los dos satélites de la misión de radar Sentinel-1, que estudia el movimiento del hielo, pueden tomar imágenes de la Tierra independientemente de las condiciones meteorológicas y de iluminación, algo esencial durante los meses de oscuridad del invierno polar.


El director de los Programas de Observación de la Tierra de la ESA, Josef Aschbacher, añade que es evidente que CryoSat y Sentinel-1 “están contribuyendo de forma significativa a que comprendamos cómo las capas de hielo responden al cambio climático y afectan al nivel del mar, algo que nos preocupa sobremanera”.

“Aunque estos impresionantes resultados demuestran nuestro compromiso con la investigación del clima a través de esfuerzos como la Iniciativa sobre el Cambio Climático y otras actividades de explotación de datos científicos, también indican lo que se puede conseguir al colaborar con nuestros colegas de la NASA”. 
 
“En cualquier caso, de cara al futuro es importante que contemos con satélites que sigan midiendo el hielo terrestre para mantener un registro de los datos climáticos del manto de hielo”.


La pérdida tres veces mayor del hielo de la totalidad del continente se debe en parte a que los glaciares fluyen más rápido en la Antártida Occidental y la península Antártica.


La Antártida Occidental es la que ha experimentado el mayor deshielo, al pasar de una pérdida de 53.000 millones de toneladas al año en los noventa a 159.000 millones de toneladas al año en 2012. Esto se debe sobre todo al rápido retroceso de los glaciares de Pine Island y de Thwaites, debido a la mayor temperatura del agua marina bajo su barreras flotantes.


Eric Rignot, del Laboratorio de Propulsión a Reacción (JPL) de la NASA, añade: “Las mediciones recopiladas por los satélites de radar y Landsat a lo largo de los años han documentado los cambios en los glaciares que rodean la Antártida con un nivel de precisión sorprendente, por lo que contamos con información exhaustiva y detallada para comprender los cambios en el flujo del hielo en la Antártida y su efecto al aumentar el nivel del mar en todo el mundo”.



sábado, 9 de junio de 2018

Curiosity Descubre Material Orgánico Antiguo y Metano Misterioso en Marte

08.06.18.- El rover Curiosity de NASA ha hallado pruebas conservadas en rocas de Marte que sugieren que el planeta podría haber tenido vida en la antigüedad, así como nuevas pruebas en la atmósfera marciana que se relacionan con la búsqueda de vida actual en el Planeta Rojo. Aunque no se trata de pruebas de vida por sí mismas, estos hallazgos son una buena señal para las futuras misiones que exploren la superficie y el subsuelo del planeta.


Los nuevos hallazgos consisten en moléculas orgánicas “resistentes” en rocas sedimentarias de 3 mil millones de años de edad cerca de la superficie, así como cambios estacionales en los niveles de metano de la atmósfera.


Las moléculas orgánicas contienen carbono e hidrógeno, y también pueden incluir oxígeno, nitrógeno y otros elementos. Si bien comúnmente se asocian con la vida, las moléculas orgánicas también pueden ser creadas por procesos no biológicos y no son necesariamente indicadores de vida.

"Con estos nuevos hallazgos, Marte nos dice que mantengamos el curso y sigamos buscando pruebas de vida", dijo Thomas Zurbuchen, administrador asociado de la Dirección de Misiones Científicas en la sede de la NASA, en Washington. "Confío en que nuestras misiones actuales y planeadas desvelarán descubrimientos aún más impresionantes en el Planeta Rojo".

“Curiosity no ha determinado el origen de las moléculas orgánicas”, explica Jen Eigenbrode del Centro de Vuelo Espacial Goddard de la NASA. “Tanto si se trata de un registro de vida antigua, como de alimento para la vida, o ha aparecido en ausencia de vida, la materia orgánica en los materiales marcianos contiene pistas químicas sobre las condiciones y procesos planetarios”.


Aunque la superficie de Marte es inhóspita hoy en día, hay pruebas claras de que, en el pasado remoto, el clima marciano permitió que el agua líquida, un ingrediente esencial para la vida tal como la conocemos, se agrupara en la superficie. Los datos de Curiosity revelan que hace miles de millones de años, un lago de agua dentro del Cráter Gale contenía todos los ingredientes necesarios para la vida, incluidos los componentes químicos y las fuentes de energía.

"La superficie marciana está expuesta a la radiación del espacio. Tanto la radiación como los productos químicos agresivos descomponen la materia orgánica ", dijo Eigenbrode. "Encontrar moléculas orgánicas antiguas en los primeros cinco centímetros de roca que se depositaron cuando Marte pudo haber sido habitable, es un buen augurio para que aprendamos la historia de las moléculas orgánicas en Marte con misiones futuras que profundizarán más".


En el segundo artículo, los científicos describen el descubrimiento de variaciones estacionales en el metano en la atmósfera marciana a lo largo de casi tres años de Marte, que son casi seis años terrestres. Esta variación fue detectada por el conjunto de instrumentos de análisis de muestras de Curiosity en Marte (SAM).


La química de la roca del agua podría haber generado el metano, pero los científicos no pueden descartar la posibilidad de orígenes biológicos. Anteriormente se había detectado metano en la atmósfera de Marte en columnas grandes e impredecibles. Este nuevo resultado muestra que los bajos niveles de metano dentro del Cráter Gale alcanzan su punto máximo en los cálidos meses de verano y disminuyen en el invierno cada año.

"Esta es la primera vez que vemos algo repetible en la historia del metano, por lo que nos ofrece una comprensión para entenderlo", dijo Chris Webster del JPL de la NASA en Pasadena, California, autor principal del segundo documento. "Todo esto es posible gracias a la longevidad de Curiosity. La larga duración nos ha permitido ver los patrones en esta 'respiración' estacional".


Para identificar material orgánico en el suelo marciano, Curiosity perforó rocas sedimentarias conocidas como lutita en cuatro zonas del Cráter Gale. Esta piedra de barro se formó gradualmente hace miles de millones de años a partir del cieno que se acumuló en el fondo del antiguo lago. Las muestras de roca fueron analizadas por SAM, que utiliza un horno para calentar las muestras para liberar moléculas orgánicas de la roca en polvo.
SAM midió pequeñas moléculas orgánicas que salieron de la muestra de lodo: fragmentos de moléculas orgánicas más grandes que no se vaporizan fácilmente. Algunos de estos fragmentos contienen azufre, lo que podría haber ayudado a preservarlos de la misma manera que el azufre que se utiliza para hacer que los neumáticos de los automóviles sean más duraderos, según Eigenbrode.


Los resultados también indican concentraciones de carbono orgánico del orden de 10 partes por millón o más. Esto está cerca de la cantidad observada en los meteoritos marcianos y aproximadamente 100 veces mayor que las detecciones previas de carbono orgánico en la superficie de Marte. Algunas de las moléculas identificadas incluyen tiofenos, benceno, tolueno y pequeñas cadenas de carbono, como propano o buteno.


En 2013, SAM detectó algunas moléculas orgánicas que contienen cloro en las rocas en el punto más profundo del cráter. Este nuevo descubrimiento se basa en el inventario de moléculas detectadas en los antiguos sedimentos del lago en Marte y ayuda a explicar por qué se conservaron.


Encontrar metano en la atmósfera y carbono antiguo preservado en la superficie les da a los científicos la confianza de que el rover Mars 2020 de la NASA y el rover ExoMars de la ESA (Agencia Espacial Europea) encontrarán aún más compuestos orgánicos, tanto en la superficie como en el subsuelo superficial.


Estos resultados también orientan las decisiones de los científicos mientras trabajan para encontrar respuestas a preguntas sobre la posibilidad de vida en Marte.

"¿Hay signos de vida en Marte?", dijo Michael Meyer, científico principal del Programa de Exploración de Marte de la NASA, en la sede de la NASA. "No lo sabemos, pero estos resultados nos dicen que estamos en el camino correcto".



El rover Curiosity ha descubierto moléculas orgánicas antiguas en Marte, en el interior de rocas sedimentarias de miles de millones de años de edad. Image Credit: NASA/GSFC

sábado, 2 de junio de 2018

Espectacular Imagen de la Nebulosa de la Tarántula y sus Alrededores

01.06.18.- Con su intenso brillo, situada a unos 160.000 años luz de distancia, la nebulosa de la Tarántula es el objeto más destacado de la Gran Nube de Magallanes, una galaxia satélite de nuestra Vía Láctea. El telescopio de rastreo del VLT, en el Observatorio Paranal de ESO, en Chile, ha obtenido imágenes muy detalladas de esta región y sus ricos alrededores. Revelan un paisaje cósmico de cúmulos de estrellas, nubes de gas que brillan intensamente y los dispersos restos de explosiones de supernova. Esta es la imagen más nítida obtenida jamás de todo este campo.


Aprovechando las capacidades del VST (Telescopio de rastreo del VLT), instalado en el Observatorio Paranal de ESO (Chile), los astrónomos han captado esta nueva imagen, muy detallada, de la nebulosa de la Tarántula junto con numerosas nebulosas y cúmulos de estrellas vecinos. La Tarántula, también conocida como 30 Doradus, es la región de formación estelar más brillante y más energética del Grupo Local de galaxias.


La nebulosa de la Tarántula, en la parte superior de esta imagen, se extiende a lo largo de más de 1000 años luz y se encuentra en la constelación de Dorado (el delfín) en el extremo sur cielo. Esta impresionante nebulosa es parte de la Gran Nube de Magallanes, una galaxia enana con un tamaño de cerca de 14 000 años luz. La Gran Nube de 
 Magallanes es una de las galaxias más cercanas a la Vía Láctea.


En el centro de la nebulosa de la Tarántula se encuentra un gigantesco y joven cúmulo estelar llamado NGC 2070, una región de estallidos de formación estelar cuyo denso núcleo, R136, contiene algunas de las estrellas más masivas y luminosas conocidas. El primero en registrar el brillante resplandor de la nebulosa de la Tarántula fue el astrónomo francés Nicolas Louis de Lacaille, en 1751.


Otro cúmulo estelar en la nebulosa de la Tarántula, mucho más antiguo, es Hodge 301, en el que se estima que, al menos 40 estrellas, han estallado como supernovas, expandiendo gas en toda la región. Un ejemplo de remanente de supernova es la superburbuja SNR N157B, que incluye el cúmulo estelar abierto NGC 2060. El primero en observar este cúmulo fue el astrónomo británico John Herschel, en 1836, quien utilizó un telescopio reflector de 18,6 pulgadas en el cabo de Buena Esperanza, en Sudáfrica. En las afueras de la nebulosa de la Tarántula, en la parte inferior derecha, es posible identificar la ubicación de la famosa supernova SN 1987A.


A la izquierda de la nebulosa de la Tarántula se puede ver un brillante cúmulo estelar abierto, llamado NGC 2100, que muestra una brillante concentración de estrellas azules rodeadas de estrellas rojas. Este cúmulo fue descubierto en 1826 por el astrónomo escocés James Dunlop mientras trabajaba en Australia y utilizó un telescopio reflector de 9 pulgadas (23 centímetros) que él mismo había construido.


En el centro de la imagen se encuentra el cúmulo estelar y nebulosa de emisión NGC 2074, otra región de formación de estrellas masivas descubierta por John Herschel. 

Echando un vistazo más de cerca podemos distinguir una estructura de polvo oscuro en forma de caballito de mar, el "Caballito de mar de la Gran Nube de Magallanes". Se trata de una gigantesca estructura en forma de pilar con una longitud de aproximadamente 20 años luz —casi cuatro veces la distancia entre el Sol y la estrella más cercana, Alfa Centauri—. La estructura está condenada a desaparecer en el próximo millón de años: a medida que siguen formándose estrellas en el cúmulo, la luz y los vientos que estas emiten eliminarán lentamente los pilares de polvo.


Esta imagen ha sido obtenida gracias a la cámara de 256 megapíxeles OmegaCAM, especialmente diseñada para el VST. La imagen se ha creado a partir de imágenes de OmegaCAM obtenidas con cuatro filtros coloreadas diferentes, incluyendo uno diseñado para aislar el brillo rojo del hidrógeno ionizado.



La rica región alrededor de la nebulosa de la Tarántula en la Gran Nube de Magallanes. Image Credit: ESO