sábado, 24 de febrero de 2018

Opportunity Sigue Brindando Sorpresas Sobre el Planeta Rojo

16.02.18.- El rover Opportunity de la NASA sigue brindando sorpresas sobre el Planeta Rojo, más recientemente con observaciones de posibles "franjas rocosas".


La textura del suelo vista en las imágenes recientes del rover se asemeja a una versión manchada de rayas de piedra muy distintivas en algunas laderas de las montañas en la Tierra, que resultan de ciclos repetidos de congelación y descongelación del suelo húmedo. Pero también podría ser debido al viento, el transporte cuesta abajo, otros procesos o una combinación.


Opportunity aterrizó en Marte en Enero de 2004. Al llegar al día, o Sol 5.000 marciano de lo que se planeó como una misión de 90 soles, Opportunity está investigando un canal llamado "Perseverance Valley", que desciende por una  pendiente interna del borde occidental del cráter Endeavor.

"Perseverance Valley es un lugar especial, como tener una nueva misión después de todos estos años", dijo el investigador principal adjunto de Opportunity, Ray Arvidson, de la Universidad de Washington en St. Louis. "Ya sabíamos que era diferente a cualquier lugar que un rover de Marte haya visto antes, incluso aún no sabemos cómo se formó, y ahora estamos viendo superficies que parecen rayas de piedra. Es misterioso. Es emocionante. 

Creo que el conjunto de observaciones que obtendremos nos permitirá comprenderlo".
En algunas laderas dentro del valle, las partículas de tierra y grava parecen haberse organizado en filas estrechas o corrugaciones, paralelas a la pendiente, alternando filas con más grava y filas con menos.



Las filas de textura en el suelo en esta porción de " Perseverance Valley " están siendo investigadas por el rover Opportunity de la NASA, que utilizó su cámara de navegación para tomar las imágenes componentes de esta escena de descenso. El rover alcanzó su 5.000 día marciano, o Sol, el 16 de Febrero de 2018. Image Credit: NASA/JPL-Caltech

El origen de todo el valle es incierto. Los científicos del equipo del rover están analizando varias pistas que sugieren acciones de agua, viento o hielo. También están considerando una variedad de posibles explicaciones para las rayas, y no están seguros de si esta textura es el resultado de procesos del Marte relativamente moderno o de un Marte mucho más antiguo.


Otras líneas de evidencia han convencido a los expertos en Marte que, en una escala de cientos de miles de años, Marte pasa por ciclos cuando la inclinación u oblicuidad de su eje aumenta tanto que parte del agua ahora congelada en los polos se vaporiza en la atmósfera y luego se convierte en nieve o escarcha acumulándose más cerca del ecuador.

"Una posible explicación de estas rayas es que son reliquias de una época de mayor oblicuidad cuando la nieve en el borde se derrite estacionalmente para humedecer el suelo, y luego los ciclos de congelación-descongelación organizaron las pequeñas rocas en franjas", dijo Arvidson. "El movimiento de descenso gravitacional puede estar difundiéndolos para que no se vean tan nítidos como cuando estaban frescos".


Bernard Hallet de la Universidad de Washington, Seattle, concuerda en que las alineaciones vistas en las imágenes de Perseverance Valley no son tan distintivas como las rayas de piedra que ha estudiado en la Tierra. Las mediciones de campo en la Tierra, cerca de la cumbre del Mauna Kea de Hawai, donde el suelo se congela todas las noches pero a menudo está seco, han documentado cómo se forman cuando la temperatura y las condiciones del suelo son correctas: suelos con una mezcla de limo, arena y grava el material más fino es más frecuente y retiene más agua. La congelación expande el suelo y empuja las partículas más grandes hacia arriba. Si se mueven hacia un lado, así como hacia abajo de la pendiente general, debido a la gravedad o al viento, tienden a alejarse de las concentraciones de grano más fino y estirarse cuesta abajo. Donde las partículas más grandes se vuelven más concentradas, el suelo se expande menos. El proceso se repite cientos o miles de veces, y el patrón se autoorganiza en franjas alternas.


Perseverance Valley contiene rocas talladas por la arena que vuela cuesta arriba desde el suelo del cráter, y el viento también puede ser la clave para clasificar las partículas más grandes en filas paralelas a la pendiente.

"Los desechos de los cráteres de impacto relativamente frescos se encuentran dispersos por la superficie del área, lo que complica la evaluación de los efectos del viento", dijo el miembro del equipo científico de Opportunity Robert Sullivan de la Universidad de Cornell, Ithaca, Nueva York. "No sé qué son estas rayas, y no creo que nadie más sepa con certeza que son, así que estamos proponiendo múltiples hipótesis y recabando más datos para resolverlo".



Esta vista desde la cámara frontal de Opportunity muestra un patrón de rayas de roca en el suelo, una sorpresa para los científicos del equipo de rover. Image Credit: NASA/JPL-Caltech

domingo, 18 de febrero de 2018

Los Agujeros Negros Supermasivos Están Superando a sus Galaxias

15.02.18.- Los mayores agujeros negros en el Universo están creciendo más rápido que la cantidad de estrellas que se forman en sus galaxias, de acuerdo con dos nuevos estudios que usan datos del Observatorio de Rayos X Chandra de la NASA y otros telescopios.


Durante muchos años, los astrónomos han recopilado datos sobre la formación de estrellas en galaxias y el crecimiento de agujeros negros supermasivos (es decir, aquellos con millones o miles de millones de masa del Sol) en sus centros. Estos datos sugieren que los agujeros negros y las estrellas en sus galaxias anfitrionas crecen en tándem entre sí.


Ahora, los hallazgos de dos grupos independientes de investigadores indican que los agujeros negros en las galaxias masivas han crecido mucho más rápido que en los menos masivos.

"Estamos tratando de reconstruir una raza que comenzó hace miles de millones de años", dijo Guang Yang de Penn State, quien dirigió uno de los dos estudios. "Estamos utilizando datos extraordinarios tomados de diferentes telescopios para descubrir cómo se desarrolló esta competencia cósmica".


Usando grandes cantidades de datos del Observatorio de Rayos X Chandra de la NASA, el Telescopio Espacial Hubble y otros observatorios, Yang y sus colegas estudiaron la tasa de crecimiento de los agujeros negros en galaxias a distancias de 4.3 a 12.2 mil millones de años luz de la Tierra.


Los científicos calcularon la relación entre la tasa de crecimiento de un agujero negro supermasivo y la tasa de crecimiento de las estrellas en su galaxia anfitriona. Una idea común es que esta relación es aproximadamente constante para todas las galaxias.


En cambio, Yang y sus colegas encontraron que esta relación es mucho más alta para las galaxias más masivas. Para las galaxias que contienen aproximadamente 100 mil millones de masas solares en estrellas, la relación es aproximadamente diez veces mayor que para las galaxias que contienen alrededor de 10 mil millones de masas solares en estrellas.

"Una pregunta obvia es ¿por qué?", dijo el coautor Niel Brandt, también de Penn State. "Tal vez las galaxias masivas son más efectivas para alimentar con gas frío a sus agujeros negros supermasivos centrales que las menos masivas".


Otro grupo de científicos encontró de forma independiente evidencias de que el crecimiento de los agujeros negros más masivos ha superado al de las estrellas en sus galaxias anfitrionas. Mar Mezcua, del Instituto de Ciencia Espacial en España, y sus colegas estudiaron los agujeros negros en algunas de las galaxias más brillantes y masivas del Universo. Estudiaron 72 galaxias ubicadas en el centro de los cúmulos de galaxias a distancias de hasta unos 3.500 millones de años luz de la Tierra. El estudio utilizó datos de rayos X del Chandra y datos de radio del Australia Telescope Compact Array, Karl G. Jansky Very Large Array y Very Long Baseline Array.


Mezcua y sus colegas calcularon las masas de agujeros negros en estos cúmulos de galaxias mediante el uso de una relación bien conocida que conecta la masa de un agujero negro con los rayos X y la emisión de radio asociada con el agujero negro. Se descubrió que las masas de los agujeros negros eran aproximadamente diez veces más grandes que las masas estimadas por otro método, usando la suposición de que los agujeros negros y las galaxias crecían en tándem.

"Encontramos agujeros negros que son mucho más grandes de lo que esperábamos", dijo Mezcua. 

"Tal vez tuvieron una ventaja en esta carrera para crecer, o tal vez tuvieron una ventaja en la velocidad de crecimiento que duró miles de millones de años".


Los investigadores encontraron que casi la mitad de los agujeros negros en su muestra tenían masas estimadas en al menos 10 mil millones de veces la masa del Sol. Esto los coloca en una categoría de peso extremo que algunos astrónomos llaman agujeros negros "ultramasivos".

"Sabemos que los agujeros negros son objetos extremos", dijo el coautor J. Hlavacek-Larrondo de la Universidad de Montreal, "por lo que puede no ser una sorpresa que los ejemplos más extremos de ellos rompan las reglas que pensamos que deberían seguir."



En este gráfico se muestra una imagen del Campo Profundo Sur del Chandra. La imagen del Chandra (azul) es la más profunda jamás obtenida en rayos X. Se ha combinado con una imagen óptica e infrarroja del Telescopio Espacial Hubble (HST), de color rojo, verde y azul. Cada fuente de lChandra es producida por gas caliente que cae hacia un agujero negro supermasivo en el centro de la galaxia anfitriona, como se representa en esta ilustración artística. Image Credit: NASA

sábado, 10 de febrero de 2018

Es Probable que los Planetas de TRAPPIST-1 Tengan Agua en Abundancia

06.02.18.- Un nuevo estudio ha revelado que, la composición de los siete planetas que orbitan a la cercana estrella enana ultrafría TRAPPIST-1, es básicamente rocosa y que, potencialmente, algunos podrían albergar más agua que la Tierra. La densidad de los planetas, que ahora se conoce con mucha más precisión, sugiere que algunos de ellos podrían tener hasta un 5% de su masa en forma de agua, aproximadamente 250 veces más que los océanos de la Tierra. Los planetas más calientes, más cercanos a su estrella, son propensos a tener densas atmósferas de vapor, y los más distantes probablemente tengan sus superficies heladas. En cuanto a tamaño, densidad y cantidad de radiación que reciben de su estrella, el cuarto planeta es el más parecido a la Tierra. Parece ser el planeta más rocoso de los siete y tiene posibilidades de albergar agua líquida.


Los planetas que hay alrededor de la débil estrella roja TRAPPIST-1, a sólo 40 años luz de la Tierra, fueron detectados por primera vez en 2016 con el Telescopio TRAPPIST-sur, instalado en el Observatorio La Silla de ESO. Durante el año siguiente se llevaron a cabo otras observaciones, tanto desde telescopios terrestres, como el Very Large Telescope de ESO, como con el Telescopio Espacial Spitzer de la NASA, revelando que no había menos de siete planetas en el sistema, cada uno de un tamaño parecido al de la Tierra. Se llaman TRAPPIST-1b, c, d, e, f, g y h, en el sentido en el que aumenta la distancia de la estrella central.


Ahora se han llevado a cabo más observaciones, tanto con telescopios basados en tierra, incluyendo la instalación SPECULOOS, casi completa, en el Observatorio Paranal de ESO, como desde el Telescopio Espacial Spitzer y el Telescopio Espacial Kepler de la NASA. Un equipo de científicos, liderado por Simon Grimm, de la Universidad de Berna (Suiza), ha aplicado métodos de modelado informático muy complejos a los datos disponibles y ha determinado las densidades de los planetas con mucha más precisión.


Simon Grimm explica cómo se determinan las masas: “Los planetas de TRAPPIST-1 están tan juntos que interfieren entre sí gravitatoriamente, por lo que, cuando pasan frente a la estrella, hay un ligero cambio en los tiempos. Estos cambios dependen de las masas de los planetas, sus distancias y otros parámetros orbitales. Con un modelo informático simulamos las órbitas de los planetas hasta que los tránsitos calculados concuerdan con los valores observados y de ahí derivamos las masas planetarias”.


Eric Agol, miembro del equipo, nos habla el significado de este hallazgo: “Una meta, perseguida desde hace un tiempo dentro del campo del estudio de los exoplanetas, ha sido conocer la composición de los planetas que son similares a la Tierra en tamaño y temperatura. El descubrimiento de TRAPPIST-1 y las capacidades de las instalaciones de ESO en Chile y del Telescopio Espacial Spitzer de la NASA en órbita, lo han hecho posible. ¡Por primera vez tenemos una pista que nos dice de qué están hechos los exoplanetas del tamaño de la Tierra!”.


Las medidas de densidad, combinadas con los modelos de las composiciones de los planetas, sugieren firmemente que los siete planetas TRAPPIST-1 no son mundos rocosos estériles. Parecen contener cantidades significativas de material volátil, probablemente agua, que alcanza hasta un 5% de la masa del planeta en algunos casos, lo cual supone una gran cantidad: en comparación, ¡solo el 0,02 % de la masa de la Tierra es agua!

“Las densidades, pese a ser pistas importantes sobre la composición de los planetas, no dicen nada de habitabilidad. Sin embargo, nuestro estudio es un paso importante mientras seguimos explorando si estos planetas podrían sustentar vida”, afirmó Olivier Brice Demory, coautor en la Universidad de Berna.


TRAPPIST-1b y c, los planetas más interiores, parece tener núcleos rocosos y estar rodeados de atmósferas mucho más gruesas que la de la Tierra. Por su parte, TRAPPIST-1d es el más ligero de los planetas, con un 30 por ciento de la masa de la Tierra. Los científicos no están seguros de si tiene una gran atmósfera, un océano o una capa de hielo.


El equipo de investigación se sorprendió por el hecho de que TRAPPIST-1e sea el único planeta del sistema un poco más denso que la Tierra, lo que sugiere que puede tener un núcleo más denso de hierro y que no necesariamente tiene una atmósfera espesa, un océano o una capa de hielo. Resulta misterioso que TRAPPIST-1e parezca tener una composición mucho más rocosa que el resto de los planetas. En términos de tamaño, densidad y de la cantidad de radiación que recibe de su estrella, es el planeta más similar a la Tierra.


TRAPPIST-1f, g y h están lo suficientemente lejos de la estrella anfitriona como para que el agua pueda congelarse y formar hielos sobre sus superficies. Si tienen atmósferas delgadas, sería improbable que contuvieran las moléculas pesadas que encontramos en la Tierra, como el dióxido de carbono.

“Es interesante que los planetas más densos no sean los que están más cerca de la estrella, y que los planetas más fríos no tengan atmósferas gruesas”, señala la coautora del estudio Caroline Dorn, de la Universidad de Zúrich (Suiza).


El sistema TRAPPIST-1 seguirá siendo un foco de intenso escrutinio por parte de numerosas instalaciones terrestres y espaciales, incluyendo el ELT (Extremely Large Telescope) de ESO y el Telescopio Espacial James Webb de NASA/ESA/CSA.


Los equipos de investigación también están invirtiendo esfuerzos en buscar otros planetas alrededor de estrellas rojas débiles como TRAPPIST-1. Como miembro de este grupo, Michaël Gillon explica: 

“Este resultado pone de relieve el enorme interés de explorar estrellas enanas ultrafrías cercanas — como TRAPPIST-1 — para el tránsito de planetas terrestres. Ese es exactamente el objetivo de SPECULOOS, nuestro nuevo buscador de exoplanetas, que está a punto de iniciar operaciones en el Observatorio Paranal de ESO, en Chile”.



Concepto artístico de cómo sería el sistema planetario TRAPPIST-1, a partir de los datos disponibles sobre los diámetros, las masas y las distancias de los planetas desde la estrella anfitriona, a partir de Febrero de 2018. Image Credit: NASA/JPL-Caltech

sábado, 3 de febrero de 2018

Espectacular Imagen de una Galaxia Espiral Captada por el Hubble

02.02.18.- Esta imagen captada por el Telescopio Espacial Hubble de NASA/ESA muestra una galaxia espiral conocida como NGC 7331. Descubierta por primera vez por el prolífico cazador de galaxias William Herschel en 1784, NGC 7331 se encuentra a unos 45 millones de años luz en la constelación de Pegaso. Frente a nosotros parcialmente de borde, la galaxia exhibe sus hermosos brazos, que giran como un remolino alrededor de su brillante región central.


Los astrónomos tomaron esta imagen utilizando la Cámara de Campo Ancho 3 (WFC3) del Hubble, mientras observaban una extraordinaria estrella explosiva, una supernova, cerca del núcleo amarillo central de la galaxia. Nombrada SN 2014C, evolucionó rápidamente de una supernova que contiene muy poco hidrógeno a una que es rica en hidrógeno, en solo un año. Esta metamorfosis raramente observada fue luminosa a altas energías y proporciona una visión única de las fases finales poco entendidas de las estrellas masivas.


NGC 7331 es similar en tamaño, forma y masa a la Vía Láctea. También tiene una tasa comparable de formación de estrellas, alberga un número similar de estrellas, tiene un agujero negro central supermasivo y brazos espirales comparables. La principal diferencia entre esta galaxia y la nuestra es que NGC 7331 es una galaxia espiral no bloqueada: carece de una "barra" de estrellas, gas y polvo que atraviesa su núcleo, como vemos en la Vía Láctea. Su bulbo central también muestra un patrón de rotación peculiar e inusual, girando en la dirección opuesta al disco galáctico en sí.


Estudiar galaxias similares nos permite construir una mejor comprensión de nuestro entorno galáctico, que no siempre podemos observar, y del comportamiento galáctico y la evolución en conjunto.


Image Credit: NASA/ESA/Hubble